

#### **Certificate of Calibration - Wind Monitoring Station**

Description: Yau Lai Estate, Bik Lai House

Manufacturer: <u>Davis Instruments</u>

Model No.: <u>Davis7440</u>

Serial No.: MC01010A44

Equipment No.: <u>SA-03-04</u>

Date of Calibration <u>17-Feb-2025</u>

Next Due Date <u>17-Aug-2025</u>

#### 1. Performance check of Wind Speed

| Wind Sp                                       | peed, m/s | Difference D (m/s) |
|-----------------------------------------------|-----------|--------------------|
| Wind Speed Reading (V1) Anemometer Value (V2) |           | D = V1 - V2        |
| 0.0                                           | 0.0       | 0.0                |
| 1.5                                           | 1.4       | 0.1                |
| 2.5                                           | 2.4       | 0.1                |
| 4.0                                           | 3.8       | 0.2                |

#### 2. Performance check of Wind Direction

| Wind Di                     | rection (°)               | Difference D (°) |
|-----------------------------|---------------------------|------------------|
| Wind Direction Reading (W1) | Marine Compass Value (W2) | D = W1 - W2      |
| 0                           | 0                         | 0.0              |
| 90                          | 90                        | 0.0              |
| 180                         | 180                       | 0.0              |
| 270                         | 270                       | 0.0              |

#### **Test Specification:**

- 1. Performance Wind Speed Test The wind meter was on-site calibrated against the anemometer
- 2. Performance Wind Direction Test The wind meter was on-site calibrated against the marine compass at four direction

Calibrated by:

Wong Shing Kwai

Approved by:

Henry/Leung





# RECALIBRATION DUE DATE:

January 7, 2026

# Certificate of Calibration

**Calibration Certification Information** 

Cal. Date: January 7, 2025 Rootsmeter S/N: 438320 Ta: 293 °K

Operator: Jim Tisch Pa: 759.0 mm Hg

Calibration Model #: TE-5025A Calibrator S/N: 3864

| Run | Vol. Init<br>(m3) | Vol. Final<br>(m3) | ΔVol.<br>(m3) | ΔTime<br>(min) | ΔP<br>(mm Hg) | ΔH<br>(in H2O) |
|-----|-------------------|--------------------|---------------|----------------|---------------|----------------|
| 1   | 1                 | 2                  | 1             | 1.4590         | 3.2           | 2.00           |
| 2   | 3                 | 4                  | 1             | 1.0360         | 6.4           | 4.00           |
| 3   | 5                 | 6                  | 1             | 0.9160         | 8.0           | 5.00           |
| 4   | 7                 | 8                  | 1             | 0.8800         | 8.8           | 5.50           |
| 5   | 9                 | 10                 | 1             | 0.7270         | 12.7          | 8.00           |

|        | Data Tabulation |                                                                             |        |          |                          |  |  |  |  |  |
|--------|-----------------|-----------------------------------------------------------------------------|--------|----------|--------------------------|--|--|--|--|--|
| Vstd   | Qstd            | $\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$ |        | Qa       | $\sqrt{\Delta H(Ta/Pa)}$ |  |  |  |  |  |
| (m3)   | (x-axis)        | (y-axis)                                                                    | Va     | (x-axis) | (y-axis)                 |  |  |  |  |  |
| 1.0114 | 0.6932          | 1.4252                                                                      | 0.9958 | 0.6825   | 0.8787                   |  |  |  |  |  |
| 1.0071 | 0.9721          | 2.0156                                                                      | 0.9916 | 0.9571   | 1.2427                   |  |  |  |  |  |
| 1.0050 | 1.0971          | 2.2535                                                                      | 0.9895 | 1.0802   | 1.3893                   |  |  |  |  |  |
| 1.0039 | 1.1408          | 2.3635                                                                      | 0.9884 | 1.1232   | 1.4572                   |  |  |  |  |  |
| 0.9987 | 1.3737          | 2.8505                                                                      | 0.9833 | 1.3525   | 1.7574                   |  |  |  |  |  |
|        | m=              | 2.08969                                                                     |        | m=       | 1.30853                  |  |  |  |  |  |
| QSTD   | b=              | -0.02374                                                                    | QA     | b=       | -0.01464                 |  |  |  |  |  |
|        | r=              | 0.99985                                                                     | ,      | r=       | 0.99985                  |  |  |  |  |  |

|       | Calculations                                                                                             |                     |                                                                    |  |  |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------|--|--|--|--|--|
|       | ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)                                                                              | Va=                 | ΔVol((Pa-ΔP)/Pa)                                                   |  |  |  |  |  |
| Qstd= | Vstd/∆Time                                                                                               | <b>Qa=</b> Va/ΔTime |                                                                    |  |  |  |  |  |
|       | For subsequent flow rate calculations:                                                                   |                     |                                                                    |  |  |  |  |  |
| Qstd= | $1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$ | Qa=                 | $1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$ |  |  |  |  |  |

| Standard Conditions |                                           |  |  |  |  |  |
|---------------------|-------------------------------------------|--|--|--|--|--|
| Tstd:               | 298.15 °K                                 |  |  |  |  |  |
| Pstd:               | 760 mm Hg                                 |  |  |  |  |  |
|                     | Key                                       |  |  |  |  |  |
|                     | ΔH: calibrator manometer reading (in H2O) |  |  |  |  |  |
|                     | ter manometer reading (mm Hg)             |  |  |  |  |  |
|                     | solute temperature (°K)                   |  |  |  |  |  |
|                     | arometric pressure (mm Hg)                |  |  |  |  |  |
| b: intercept        |                                           |  |  |  |  |  |
| m: slope            | m: slope                                  |  |  |  |  |  |

#### RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

FAX: (513)467-9009

# **High-Volume TSP Sampler** 5-POINT CALIBRATION DATA SHEET



File No. MA16034/05/0052

| Project No.       | AM1 - Tin Hau              | Temple               |                                                                  |                                |                                  |                               |                                      |
|-------------------|----------------------------|----------------------|------------------------------------------------------------------|--------------------------------|----------------------------------|-------------------------------|--------------------------------------|
| Date:             | 14-Feb-25                  |                      | Next Due Date:                                                   | 14-                            | Apr-25                           | Operator:                     | SK                                   |
| Equipment No.:    | A-0                        | 01-05                | Model No.:                                                       | G                              | S2310                            | Serial No.                    | 10599                                |
|                   |                            |                      | Ambient C                                                        | andition                       |                                  |                               |                                      |
| Temperatu         | ra Ta (K)                  | 291.2                | Pressure, Pa                                                     |                                |                                  | 763.4                         |                                      |
| Temperatu         | ie, ia (K)                 | 291.2                | Tiessure, Ta                                                     | (IIIIII Ig)                    |                                  | 703.4                         |                                      |
|                   |                            | Or                   | ifice Transfer Star                                              | ndard Informa                  | ation                            |                               |                                      |
| Serial            | l No.                      | 3864                 | Slope, mc                                                        | 0.05914                        | Intercept                        | t, bc                         | -0.02377                             |
| Last Calibra      | ation Date:                | 7-Jan-25             | r                                                                | nc x Qstd + bo                 | $c = [\Delta H \times (Pa/760]]$ | $(298/Ta)^{1/2}$              | 2                                    |
| Next Calibr       | ation Date:                | 7-Jan-26             |                                                                  | $Qstd = \{ [\Delta H \ x ] \}$ | (Pa/760) x (298/7                | Γa)] <sup>1/2</sup> -bc} / me | c                                    |
|                   |                            |                      |                                                                  |                                |                                  |                               |                                      |
|                   | I                          |                      | Calibration of                                                   | ΓSP Sampler                    |                                  |                               |                                      |
| Calibration       | ATT ( 'C' )                |                      | rfice                                                            | 0.1.075                        | ATT (TTTC: -                     | HVS                           | (200 T : 1/2                         |
| Point             | ΔH (orifice), in. of water | [ΔH x (Pa/76         | 50) x (298/Ta)] <sup>1/2</sup>                                   | Qstd (CFM) X - axis            | ΔW (HVS), in. of water           |                               | 50) x (298/Ta)] <sup>1/2</sup> -axis |
| 1                 | 13.1                       |                      | 3.67                                                             | 62.45                          | 8.6                              | 4                             | 2.97                                 |
| 2                 | 10.2                       |                      | 3.24                                                             | 55.15                          | 6.4                              |                               | 2.56                                 |
| 3                 | 7.1                        |                      | 2.70                                                             | 46.08                          | 4.2                              |                               | 2.08                                 |
| 4                 | 5.1                        |                      | 2.29                                                             | 39.12                          | 2.7                              | -                             | 1.67                                 |
| 5                 | 2.9                        |                      | 1.73                                                             | 29.60                          | 1.4                              | 1.20                          |                                      |
| By Linear Regr    | ression of Y on Y          | X.                   |                                                                  |                                |                                  |                               |                                      |
| Slope, $mw =$     | 0.0543                     | _                    | 1                                                                | Intercept, bw                  | -0.428                           | 9                             |                                      |
| Correlation       | coefficient* =             | 0                    | .9996                                                            | i                              |                                  |                               |                                      |
| *If Correlation C | Coefficient < 0.99         | 90, check and rec    | calibrate.                                                       |                                |                                  |                               |                                      |
|                   |                            |                      | Set Point Ca                                                     | alculation                     |                                  |                               |                                      |
| From the TSP Fi   | eld Calibration (          | Curve, take Qstd     | = 43 CFM                                                         |                                |                                  |                               |                                      |
| From the Regres   | sion Equation, th          | ne "Y" value acco    | ording to                                                        |                                |                                  |                               |                                      |
|                   |                            |                      |                                                                  | ~ = co> (=                     | 2017 23/2                        |                               |                                      |
|                   |                            | mw x (               | $\mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$ | (Pa/760) x (29                 | 98/Ta)] <sup>1/2</sup>           |                               |                                      |
| Therefore, Se     | et Point; W = ( m          | nw x Qstd + bw )     | <sup>2</sup> x ( 760 / Pa ) x ( 7                                | Γa / 298 ) =                   | 3.54                             |                               |                                      |
|                   |                            |                      |                                                                  |                                |                                  |                               |                                      |
|                   |                            |                      |                                                                  |                                |                                  |                               |                                      |
| Remarks:          |                            |                      |                                                                  |                                |                                  |                               |                                      |
|                   |                            |                      |                                                                  |                                |                                  |                               |                                      |
|                   |                            |                      |                                                                  | <u></u>                        |                                  |                               |                                      |
| Conducted by:     | Wong Sh                    | ning Kwai            | Signature:                                                       | λ',                            | <u> </u>                         | Date:                         | 14-Feb-25                            |
|                   |                            | <i>G</i> <del></del> |                                                                  | 1                              |                                  |                               |                                      |
| Checked by:       | Henry                      | Leung                | Signature:                                                       | \-lem                          | y Xvy                            | Date:                         | 14-Feb-25                            |

# **High-Volume TSP Sampler**

#### 5-POINT CALIBRATION DATA SHEET



File No. MA16034/08/0052

| Project No.                                  | AM2 - Sai Tso V                    | Van Recreation | Ground                                                           |                     |                                  |            |                                     |
|----------------------------------------------|------------------------------------|----------------|------------------------------------------------------------------|---------------------|----------------------------------|------------|-------------------------------------|
| Date:                                        | 14-Feb-25 Next Due Date: 14-Apr-25 |                | Operator:                                                        | SK                  |                                  |            |                                     |
| Equipment No.:                               | A-01                               | 1-08           | Model No.:                                                       | GS                  | 52310                            | Serial No. | 1287                                |
|                                              |                                    |                | Ambient C                                                        | Condition           |                                  |            |                                     |
| Temperatur                                   | re, Ta (K)                         | 291.2          | Pressure, Pa                                                     |                     |                                  | 763.4      |                                     |
|                                              |                                    |                |                                                                  |                     |                                  |            |                                     |
| Serial                                       | No                                 | 3864           | Slope, mc                                                        | 0.05914             | Intercept                        | t he       | -0.02377                            |
| Last Calibra                                 |                                    | 7-Jan-25       |                                                                  |                     | $c = [\Delta H \times (Pa/760]]$ |            |                                     |
| Next Calibra                                 |                                    | 7-Jan-26       |                                                                  |                     | $(Pa/760) \times (298/7)$        |            |                                     |
|                                              |                                    |                | <u>I</u>                                                         |                     |                                  | ,,         |                                     |
|                                              |                                    |                | Calibration of                                                   | TSP Sampler         |                                  |            |                                     |
| Calibration                                  |                                    | Oı             | fice                                                             |                     |                                  | HVS        |                                     |
| Point                                        | $\Delta H$ (orifice), in. of water | [ΔH x (Pa/76   | 60) x (298/Ta)] <sup>1/2</sup>                                   | Qstd (CFM) X - axis | $\Delta W$ (HVS), in. of water   |            | 0) x (298/Ta)] <sup>1/2</sup> -axis |
| 1                                            | 13.4                               |                | 3.71                                                             | 63.16               | 8.4                              |            | 2.94                                |
| 2                                            | 10.2                               |                | 3.24                                                             | 55.15               | 6.2                              | 2          | 2.52                                |
| 3                                            | 7.6                                |                | 2.80                                                             | 47.66               | 4.1                              | 2          | 2.05                                |
| 4                                            | 5.3                                |                | 2.33                                                             | 39.87               | 2.6                              | 1          | 1.63                                |
| 5                                            | 3.2                                |                | 1.82                                                             | 31.12               | 1.4                              | 1          | 1.20                                |
| Slope, mw = Correlation of *If Correlation C | coefficient* =                     |                | .9993                                                            | -                   | -0.535                           |            |                                     |
|                                              |                                    |                | Set Point C                                                      | alculation          |                                  |            |                                     |
|                                              | eld Calibration C                  |                |                                                                  |                     |                                  |            |                                     |
| rom the regress                              | non Equation, un                   |                | -                                                                |                     | 419                              |            |                                     |
|                                              |                                    | mw x (         | $\mathbf{pstd} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$ | x (Pa/760) x (29    | $[98/Ta)]^{1/2}$                 |            |                                     |
| Therefore, Se                                | et Point; W = ( my                 | w x Qstd + bw) | <sup>2</sup> x ( 760 / Pa ) x ( ′                                | Γa / 298 ) =        | 3.25                             |            |                                     |
|                                              |                                    |                |                                                                  |                     |                                  |            |                                     |
| Remarks:                                     |                                    |                |                                                                  |                     |                                  |            |                                     |
| •                                            |                                    |                |                                                                  | 1 -                 | 1                                |            |                                     |
| Conducted by:                                | Wong Shi                           | ing Kwai       | Signature:                                                       |                     | <u> </u>                         | Date:      | 14-Feb-25                           |
| Checked by:                                  | Henry                              | Leung          | Signature:                                                       | \-lem               | J Xong                           | Date:      | 14-Feb-25                           |

# **High-Volume TSP Sampler** 5-POINT CALIBRATION DATA SHEET



File No. MA16034/03/0052

| Project No.                                                          | AM3 - Yau Lai              | Estate, Bik Lai I                  | House                          |                     |                                  | _                 |                                         |
|----------------------------------------------------------------------|----------------------------|------------------------------------|--------------------------------|---------------------|----------------------------------|-------------------|-----------------------------------------|
| Date:                                                                | 14-F                       | 14-Feb-25 Next Due Date: 14-Apr-25 |                                | Apr-25              | Operator:                        | SK                |                                         |
| Equipment No.:                                                       | A-0                        | 1-03                               | _                              |                     | S2310                            | <u></u>           | 10379                                   |
|                                                                      |                            |                                    | Ambient C                      | ondition            |                                  |                   |                                         |
| Temperatur                                                           | re Ta (K)                  | 291.2                              | Pressure, Pa                   |                     |                                  | 763.4             |                                         |
| Temperatur                                                           | ic, ia (ix)                | 2)1.2                              | Tressure, ra                   | (IIIIII Ig)         |                                  | 703.4             |                                         |
|                                                                      |                            | Or                                 | ifice Transfer Star            | ndard Informa       | ntion                            |                   |                                         |
| Serial                                                               | No.                        | 3864                               | Slope, mc                      | 0.05914             | Intercept                        | t, bc             | -0.02377                                |
| Last Calibra                                                         | ation Date:                | 7-Jan-25                           | 1                              | mc x Qstd + bo      | $c = [\Delta H \times (Pa/760]]$ | $(298/Ta)]^{1/2}$ | 2                                       |
| Next Calibra                                                         | ation Date:                | 7-Jan-26                           |                                |                     | (Pa/760) x (298/                 |                   |                                         |
|                                                                      |                            |                                    |                                |                     |                                  |                   |                                         |
|                                                                      |                            |                                    | Calibration of                 | TSP Sampler         |                                  |                   |                                         |
| Calibration                                                          |                            | Oı                                 | fice                           | I                   |                                  | HVS               | 1/2                                     |
| Point                                                                | ΔH (orifice), in. of water | [ΔH x (Pa/76                       | 50) x (298/Ta)] <sup>1/2</sup> | Qstd (CFM) X - axis | ΔW (HVS), in. of water           |                   | 50) x (298/Ta)] <sup>1/2</sup><br>-axis |
| 1                                                                    | 13.0                       |                                    | 3.66                           | 62.21               | 8.1                              | 2                 | 2.89                                    |
| 2                                                                    | 10.1                       |                                    | 3.22                           | 54.88               | 6.1                              | 2                 | 2.50                                    |
| 3                                                                    | 7.5                        |                                    | 2.78                           | 47.35               | 4.3                              | 2                 | 2.10                                    |
| 4                                                                    | 5.1                        |                                    | 2.29                           | 39.12               | 2.6                              |                   | 1.63                                    |
| 5                                                                    | 3.0                        |                                    | 1.76                           | 30.10               | 1.5                              | -                 | 1.24                                    |
| By Linear Regr<br>Slope, mw =<br>Correlation of<br>*If Correlation C | 0.0519<br>coefficient* =   |                                    | .9991                          | Intercept, bw :     | -0.351                           |                   |                                         |
|                                                                      |                            |                                    | Set Point Ca                   | alculation          |                                  |                   |                                         |
| From the TSP Fi                                                      |                            | ne "Y" value acc                   | = 43 CFM                       |                     | 98/Ta)] <sup>1/2</sup>           |                   |                                         |
| Therefore, Se                                                        | et Point; W = ( m          | nw x Qstd + bw)                    | <sup>2</sup> x (760 / Pa) x (7 | Γa / 298 ) =        | 3.44                             |                   |                                         |
| Remarks:                                                             |                            |                                    |                                |                     |                                  |                   |                                         |
| Conducted by:                                                        | Wong Sł                    | ning Kwai                          | Signature:                     | K                   | <u></u>                          | Date:             | 14-Feb-25                               |
| Checked by:                                                          | Henry                      | Leung                              | Signature:                     | \-lem               | 1 (Xo)                           | Date:             | 14-Feb-25                               |

# High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET



File No. MA20003/55/030 Project No. CKL 2 - Flat 103 Cha Kwo Ling Village 4-Jan-25 Next Due Date: 6-Mar-25 Operator: SK Date: Equipment No.: A-01-55 Model No.: TE 5170 Serial No. 1956 **Ambient Condition** 292.7 Temperature, Ta (K) Pressure, Pa (mmHg) 765.4 **Orifice Transfer Standard Information** 0.05976 Intercept, bc 3864 Slope, mc Serial No. -0.05018  $mc \times Ostd + bc = [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 15-Jan-24 Qstd =  $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ 14-Jan-25 Next Calibration Date: **Calibration of TSP Sampler** Orfice Calibration  $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$  $\Delta H$  (orifice), Ostd (CFM)  $\Delta W$  (HVS), in.  $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Point in. of water X - axis of water Y-axis 3.07 1 13.6 3.73 63.33 9.2 11.2 2.74 2 3.39 57.55 7.3 3.04 51.67 5.7 2.42 4 5.3 2.33 39.85 2.6 1.63 3.6 32.99 1.8 5 1.92 1.36 By Linear Regression of Y on X Slope , mw = 0.0581 Intercept, bw : -0.6068 Correlation coefficient\* = 0.9980 \*If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw =  $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point;  $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$  3.49 Remarks: Conducted by: Wong Shing Kwai Checked by: Henry Leung

# High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET



File No. MA20003/55/031 Project No. CKL 2 - Flat 103 Cha Kwo Ling Village 6-Mar-25 Next Due Date: 6-May-25 Date: Operator: SK Equipment No.: A-01-55 Model No.: TE 5170 Serial No. 1956 **Ambient Condition** Temperature, Ta (K) 287.5 Pressure, Pa (mmHg) 764.8 **Orifice Transfer Standard Information** 0.05914 Intercept, bc 3864 Slope, mc -0.02377 Serial No.  $mc \times Ostd + bc = [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ 7-Jan-25 Last Calibration Date: Qstd =  $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ 7-Jan-26 Next Calibration Date: **Calibration of TSP Sampler** Orfice Calibration  $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$  $\Delta H$  (orifice), Ostd (CFM)  $\Delta W$  (HVS), in.  $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Point in. of water X - axis of water Y-axis 1 13.5 3.75 63.85 9.1 3.08 7.2 2.74 2 11.0 3.39 57.68 9.1 3.08 52.50 5.6 2.42 4 5.1 2.31 39.40 2.6 1.65 1.9 5 3.8 1.99 34.07 1.41 By Linear Regression of Y on X Slope , mw = 0.0571 Intercept, bw : -0.5684 Correlation coefficient\* = \*If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw =  $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point;  $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) = 3.42$ Remarks: Conducted by: Wong Shing Kwai Checked by: Henry Leung



#### **Certificate of Calibration**

| Tt is | certified that t | the item und | ler calibration b | nas heen | calibrated by | corresponding | calibrated High | Volume Sample    |
|-------|------------------|--------------|-------------------|----------|---------------|---------------|-----------------|------------------|
| 11 15 | сеннестна г      | ше пеш ша    | ег санытанон г    | Ias Deen | Cambrated by  | COHESDOHUIII9 | Cambrated migh  | . voiime Jannoie |

| Description:                     | Laser Dust Mo                       | nitor                                                                                                  |                 | Date of             | of Calibration     | 30-Jan-25          |
|----------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------|---------------------|--------------------|--------------------|
| Manufacturer:                    | Sibata Scientifi                    | ic Technology LTD.                                                                                     |                 | Validity of Calibra | ation Record       | 1-Apr-25           |
| Model No.:                       | LD-3B                               |                                                                                                        |                 |                     |                    |                    |
| Serial No.:                      | 2Y6194                              | _                                                                                                      |                 |                     |                    |                    |
| Equipment No.:                   | SA-01-02                            |                                                                                                        | Sensitivity     | 0.001 mg/m3         |                    |                    |
| High Volume Sa                   | mpler No.:                          | A-01-03                                                                                                | Before Sensi    | tivity Adjustment   | 578                |                    |
| Tisch Calibration                | n Orifice No.:                      | 3864                                                                                                   | After Sensiti   | vity Adjustment     | 578                |                    |
|                                  | •                                   |                                                                                                        | 641 m           | GD.                 |                    |                    |
|                                  |                                     | Laser Dust Monitor                                                                                     | ation of 1 hr T | SP                  | HVS                |                    |
| Calibration                      |                                     | Count / Minute                                                                                         | <u>.</u>        | Mass                | s concentration (µ | $(g/m^3)$          |
| Point                            | Total Count                         | X-axis                                                                                                 | •               | IVI dist            | Y-axis             | (g/ III )          |
| 1                                | 4000                                | 74.0                                                                                                   |                 |                     | 143.0              |                    |
| 2                                | 3600                                | 64.0                                                                                                   |                 |                     | 121.0              |                    |
| 3                                | 3000                                | 54.0                                                                                                   |                 |                     | 101.0              |                    |
| Aver                             | age                                 | 64.0                                                                                                   |                 |                     | 121.7              |                    |
| By Linear Regr<br>Slope , mw =   |                                     |                                                                                                        | Inter           | ccept, bw =         | -12.7333           | 3                  |
| Correla                          | ation coefficien                    | t* = 0.99                                                                                              | 996             |                     |                    |                    |
| Set Correlation I SCF = [ K=Higl |                                     | pler / Dust Meter, ( μ g/m3) ]                                                                         | 1               | 1.9                 |                    |                    |
| The Dust Monito (CF) between the | or was compared<br>e Dust Monitor a | the instruction manual: d with a calibrated High Volument High Volume Sampler. ed by HOKLAS laboratory | •               |                     | d to generate the  | Correlation Factor |
| Calibrated by:                   | cal Officer (Wor                    | ng Shing Kwai)                                                                                         |                 | Approved by:        | Project Manager    | (Henry Leung)      |



#### **Certificate of Calibration**

| Description:                                                                                                                                                                                                                                                                                                        | n: Digital Dust Indicator |                                       |                  | Date of Calibration 30-Jan-25 |                                |                    |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------|------------------|-------------------------------|--------------------------------|--------------------|--|--|
| Manufacturer:                                                                                                                                                                                                                                                                                                       | Sibata Scienti            | fic Technology LTD.                   | <u>_</u>         | Validity of Calibra           | ation Record                   | 1-Apr-25           |  |  |
| Model No.:                                                                                                                                                                                                                                                                                                          | LD-5R                     |                                       |                  |                               |                                |                    |  |  |
| Serial No.:                                                                                                                                                                                                                                                                                                         | 8Y2374                    |                                       |                  |                               |                                |                    |  |  |
| Equipment No.:                                                                                                                                                                                                                                                                                                      | SA-01-04                  |                                       | Sensitivity      | 0.001 mg/m3                   |                                |                    |  |  |
| High Volume Sa                                                                                                                                                                                                                                                                                                      | mpler No.:                | A-01-03                               | Before Sensiti   | vity Adjustment               | 652                            |                    |  |  |
| Tisch Calibration                                                                                                                                                                                                                                                                                                   | orifice No.:              | 3864                                  | After Sensitivi  | ty Adjustment                 | 652                            |                    |  |  |
|                                                                                                                                                                                                                                                                                                                     |                           | Cal                                   | libration of 1 h | r TSP                         |                                |                    |  |  |
| Calibration                                                                                                                                                                                                                                                                                                         |                           | <b>Laser Dust Monitor</b>             |                  |                               | HVS                            |                    |  |  |
| Point                                                                                                                                                                                                                                                                                                               | M                         | ass Concentration (μg/1 <b>X-axis</b> | m3)              | Mass                          | concentration (µ <b>Y-axis</b> | g/m <sup>3</sup> ) |  |  |
| 1                                                                                                                                                                                                                                                                                                                   |                           | 75.0                                  |                  |                               | 136.0                          |                    |  |  |
| 2                                                                                                                                                                                                                                                                                                                   |                           | 63.0                                  |                  |                               | 118.0                          |                    |  |  |
| 3                                                                                                                                                                                                                                                                                                                   |                           | 53.0                                  |                  |                               | 101.0                          |                    |  |  |
| Average                                                                                                                                                                                                                                                                                                             |                           | 63.7                                  |                  |                               | 118.3                          |                    |  |  |
| By Linear Regr<br>Slope , mw =<br>Correlation co                                                                                                                                                                                                                                                                    | 1.58                      |                                       |                  | eept, bw =                    | 17.2363                        |                    |  |  |
|                                                                                                                                                                                                                                                                                                                     |                           | Set                                   | t Correlation F  | actor                         |                                |                    |  |  |
| Particaulate Con                                                                                                                                                                                                                                                                                                    | centration by I           | High Volume Sampler (                 | $(\mu g/m^3)$    |                               | 118.3                          |                    |  |  |
| Particaulate Con-                                                                                                                                                                                                                                                                                                   | centration by I           | Oust Meter (μg/m <sup>3</sup> )       |                  | 63.7                          |                                |                    |  |  |
| Measureing time                                                                                                                                                                                                                                                                                                     |                           |                                       |                  |                               | 60.0                           |                    |  |  |
| Set Correlation F SCF = [ K=HigI                                                                                                                                                                                                                                                                                    |                           | npler / Dust Meter, (με               | g/m3) ]          | 1.9                           |                                |                    |  |  |
| In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.  Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed) |                           |                                       |                  |                               |                                |                    |  |  |
| Calibrated by:<br>Technica                                                                                                                                                                                                                                                                                          |                           | ng Shing Kwai)                        | _                | Approved by: _<br>Project     | Manager (Henry                 | /                  |  |  |



#### **Certificate of Calibration**

| Description:                | Digital Dust Indicator     |                                                                         | Date of Calibration 30-Jan |                           | 30-Jan-25         |                     |
|-----------------------------|----------------------------|-------------------------------------------------------------------------|----------------------------|---------------------------|-------------------|---------------------|
| Manufacturer:               | Sibata Scienti             | fic Technology LTD.                                                     | <u>_</u>                   | Validity of Calibra       | tion Record       | 1-Apr-25            |
| Model No.:                  | LD-5R                      |                                                                         |                            |                           |                   |                     |
| Serial No.:                 | 8Y2373                     |                                                                         |                            |                           |                   |                     |
| Equipment No.:              | SA-01-05                   |                                                                         | Sensitivity                | 0.001 mg/m3               |                   |                     |
| High Volume Sa              | mpler No.:                 | A-01-03                                                                 | Before Sensiti             | vity Adjustment           | 657               |                     |
| Tisch Calibration           | orifice No.:               | 3864                                                                    | After Sensitiv             | ity Adjustment _          | 657               |                     |
|                             |                            | Cal                                                                     | libration of 1 h           | r TSP                     |                   |                     |
| Calibration                 |                            | <b>Laser Dust Monitor</b>                                               |                            |                           | HVS               |                     |
| Point                       | Mass Concentration (μg/m3) |                                                                         |                            | Mass                      | concentration (µ  | $g/m^3$ )           |
| 1                           |                            | 76.0                                                                    |                            |                           | Y-axis<br>132.0   |                     |
| 2                           |                            | 64.0                                                                    |                            |                           | 116.0             |                     |
| 3                           |                            | 55.0                                                                    |                            |                           | 102.0             |                     |
| Average                     |                            | 65.0                                                                    |                            |                           | 116.7             |                     |
| Slope , mw = Correlation co | 1.423<br>pefficient* =     | 0.9990                                                                  |                            |                           | 24.1441           |                     |
|                             |                            |                                                                         | t Correlation F            | actor                     |                   |                     |
|                             | •                          | High Volume Sampler (                                                   | [μg/m³)                    | 116.7<br>65.0             |                   |                     |
| Measureing time             |                            | Oust Meter (μg/m <sup>3</sup> )                                         |                            | 60.0                      |                   |                     |
| Set Correlation F           |                            |                                                                         |                            |                           | 00.0              |                     |
|                             |                            | npler / Dust Meter, (μ                                                  | g/m3) ]                    | 1.8                       |                   |                     |
| In-house method             | in according t             | o the instruction manua                                                 | ո1։                        |                           |                   |                     |
| Factor (CF) betw            | een the Dust N             | ed with a calibrated Hig<br>Monitor and High Volu<br>ted by HOKLAS labo | me Sampler.                |                           | vas used to gener | ate the Correlation |
| Calibrated by:              |                            | ng Shing Kwai)                                                          | _                          | Approved by: _<br>Project | Manager (Henry    | , ,                 |



#### **Certificate of Calibration**

| Description:                                                                                                                                                     | Digital Dust I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ndicator                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date                    | of Calibration            | 30-Jan-25          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|--------------------|
| Manufacturer:                                                                                                                                                    | Sibata Scienti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fic Technology LTD.                                                                                                     | <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Validity of Calibr      | ation Record              | 1-Apr-25           |
| Model No.:                                                                                                                                                       | LD-5R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |                    |
| Serial No.:                                                                                                                                                      | 972777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |                    |
| Equipment No.:                                                                                                                                                   | SA-01-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                         | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001 mg/m3             |                           |                    |
| High Volume Sa                                                                                                                                                   | mpler No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A-01-03                                                                                                                 | Before Sensiti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vity Adjustment         | 645                       |                    |
| Tisch Calibration                                                                                                                                                | n Orifice No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3864                                                                                                                    | After Sensitivi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ty Adjustment           | 645                       |                    |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cal                                                                                                                     | libration of 1 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r TSP                   |                           |                    |
| Calibration                                                                                                                                                      | Calibration Laser Dust Monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | HVS                       |                    |
| Point                                                                                                                                                            | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ass Concentration (μg/1 <b>X-axis</b>                                                                                   | m3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mas                     | s concentration (µ Y-axis | g/m <sup>3</sup> ) |
| 1                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75.0                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 133.0                     |                    |
| 2                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63.0                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 117.0                     |                    |
| 3                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52.0                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 101.0                     |                    |
| Average                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63.3                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 117.0                     |                    |
|                                                                                                                                                                  | ession of Y on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • • •                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |                    |
| Slope , mw = Correlation co                                                                                                                                      | 1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                         | Intere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cept, bw =              | 28.9395                   |                    |
| Slope, mw =                                                                                                                                                      | 1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9997                                                                                                                  | Interent of the control of the contr |                         | 28.9395                   | _                  |
| Slope , mw = Correlation co                                                                                                                                      | 1.390<br>pefficient* =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9997                                                                                                                  | t Correlation F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | <b>28.9395</b> 117.0      |                    |
| Slope , mw = Correlation co                                                                                                                                      | 1.390 pefficient* =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9997<br>Set                                                                                                           | t Correlation F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                           |                    |
| Slope , mw = Correlation co Particaulate Con Particaulate Con Measureing time                                                                                    | centration by I centration centr | 0.9997  Set  High Volume Sampler (                                                                                      | t Correlation F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 117.0                     |                    |
| Slope , mw = Correlation co  Particaulate Con Particaulate Con Measureing time Set Correlation F                                                                 | centration by I centration by  | 0.9997  Set  High Volume Sampler (                                                                                      | t <b>Correlation F</b><br>μg/m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | 117.0<br>63.3             |                    |
| Slope , mw = Correlation co  Particaulate Con Particaulate Con Measureing time Set Correlation F SCF = [K=High                                                   | centration by I centration by I (min) Factor, SCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9997  Set  High Volume Sampler (  Dust Meter (μg/m³)                                                                  | t Correlation F<br>μg/m³)<br>g/m3) ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | actor                   | 117.0<br>63.3             |                    |
| Slope , mw = Correlation co  Particaulate Con Particaulate Con Measureing time Set Correlation F SCF = [ K=High In-house method The Dust Monito Factor (CF) betw | centration by I centration by  | 0.9997  Set  High Volume Sampler (  Dust Meter (μg/m³)  npler / Dust Meter, (μg                                         | t Correlation F μg/m³) g/m3) ] ul: gh Volume Samme Sampler.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.8 oler and The result | 117.0<br>63.3<br>60.0     |                    |
| Slope , mw = Correlation co  Particaulate Con Particaulate Con Measureing time Set Correlation F SCF = [ K=High In-house method The Dust Monito Factor (CF) betw | centration by I centration by  | Dust Meter (μg/m³)  npler / Dust Meter, (μg o the instruction manual and with a calibrated High Monitor and High Volume | t Correlation F μg/m³) g/m3) ] ul: gh Volume Samme Sampler.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.8 oler and The result | 117.0<br>63.3<br>60.0     |                    |

Digital Dust Indicator



Date of Calibration 30-Jan-25

#### **Certificate of Calibration**

Description:

| Manufacturer:                                                                      | Sibata Scient         | ific Technology LTD.                                                     | _                | Validity of Calibr | ation Record       | 1-Apr-25             |
|------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------|------------------|--------------------|--------------------|----------------------|
| Model No.:                                                                         | LD-5R                 |                                                                          |                  |                    |                    |                      |
| Serial No.:                                                                        | 972778                |                                                                          |                  |                    |                    |                      |
| Equipment No.:                                                                     | SA-01-07              |                                                                          | Sensitivity      | 0.001 mg/m3        | _                  |                      |
| High Volume Sa                                                                     | mpler No.:            | A-01-03                                                                  | Before Sensitiv  | vity Adjustment    | 735 CPM            |                      |
| Tisch Calibration                                                                  | orifice No.:          | 3864                                                                     | After Sensitivi  | ty Adjustment      | 735 CPM            |                      |
|                                                                                    |                       | Cal                                                                      | libration of 1 h | r TSP              |                    |                      |
| Calibration                                                                        |                       | Laser Dust Monitor                                                       |                  |                    | HVS                |                      |
| Point                                                                              | M                     | Iass Concentration (μg/1                                                 | m3)              | Mas                | ss concentration ( | $\mu g/m^3$ )        |
|                                                                                    |                       | X-axis                                                                   |                  |                    | Y-axis             |                      |
| 1                                                                                  |                       | 77.0                                                                     |                  |                    | 141.0              |                      |
| 3                                                                                  |                       | 67.0<br>56.0                                                             |                  |                    | 120.0<br>100.0     |                      |
| Average                                                                            |                       | 66.7                                                                     |                  |                    | 120.3              |                      |
| Slope , mw = Correlation co                                                        | 1.95<br>pefficient* = | 0.9991                                                                   | Interc           | ept, bw =          | -9.6767            | <u>'</u>             |
|                                                                                    |                       | Set                                                                      | t Correlation F  | actor              |                    |                      |
| Particaulate Con                                                                   | centration by I       | High Volume Sampler (                                                    | $\mu g/m^3$ )    |                    | 120.3              |                      |
| Particaulate Con                                                                   | centration by I       | Oust Meter (μg/m <sup>3</sup> )                                          |                  | 66.7               |                    |                      |
| Measureing time                                                                    | , (min)               |                                                                          |                  |                    | 60.0               |                      |
| Set Correlation Factor , SCF SCF = [ K=High Volume Sampler / Dust Meter, (μg/m3) ] |                       |                                                                          |                  | 1.8                |                    |                      |
| In-house method                                                                    | in according t        | to the instruction manua                                                 | վ:               |                    |                    |                      |
| Factor (CF) betw                                                                   | een the Dust I        | ed with a calibrated Hig<br>Monitor and High Volu<br>Ited by HOKLAS labo | me Sampler.      |                    | was used to gene   | rate the Correlation |
| Calibrated by:                                                                     |                       | M.                                                                       | _                | Approved by:       | \-len              | y day                |
| Technica                                                                           | al Officer (Wo        | ng Shing Kwai)                                                           |                  | Projec             | et Manager (Henr   | y Leung)             |

Digital Dust Indicator



Date of Calibration 30-Jan-25

#### **Certificate of Calibration**

Description:

| Manufacturer:                    | Sibata Scient         | ific Technology LTD.                                                    | _                | Validity of Calibr | ration Record      | 1-Apr-25             |
|----------------------------------|-----------------------|-------------------------------------------------------------------------|------------------|--------------------|--------------------|----------------------|
| Model No.:                       | LD-5R                 |                                                                         |                  |                    |                    |                      |
| Serial No.:                      | 972780                |                                                                         |                  |                    |                    |                      |
| Equipment No.:                   | SA-01-09              |                                                                         | Sensitivity      | 0.001 mg/m3        | _                  |                      |
| High Volume Sa                   | mpler No.:            | A-01-03                                                                 | Before Sensitiv  | vity Adjustment    | 739 CPM            |                      |
| Tisch Calibration                | n Orifice No.:        | 3864                                                                    | After Sensitivi  | ty Adjustment      | 739 CPM            |                      |
|                                  |                       | Cal                                                                     | libration of 1 h | r TSP              |                    |                      |
| Calibration                      |                       | Laser Dust Monitor                                                      | •                |                    | HVS                |                      |
| Point                            | N                     | Iass Concentration (μg/1                                                | m3)              | Mas                | ss concentration ( | $\mu g/m^3$ )        |
|                                  |                       | X-axis                                                                  |                  |                    | Y-axis             |                      |
| 1                                |                       | 73.0                                                                    |                  |                    | 139.0              |                      |
| 3                                |                       | 63.0<br>55.0                                                            |                  |                    | 117.0<br>101.0     |                      |
| Average                          |                       | 63.7                                                                    |                  |                    | 119.0              |                      |
| Slope , mw =<br>Correlation co   | 2.11<br>pefficient* = | 0.9996                                                                  |                  | ept, bw =          | -15.639            | 3                    |
|                                  |                       | Set                                                                     | t Correlation F  | actor              |                    |                      |
| Particaulate Con                 | centration by I       | High Volume Sampler (                                                   | $(\mu g/m^3)$    | 119.0              |                    |                      |
| Particaulate Con                 | centration by l       | Oust Meter (μg/m <sup>3</sup> )                                         |                  | 63.7               |                    |                      |
| Measureing time                  | , (min)               |                                                                         |                  |                    | 60.0               |                      |
| Set Correlation F SCF = [ K=Higl | ,                     | npler / Dust Meter, (με                                                 | g/m3) ]          | 1.9                |                    |                      |
| In-house method                  | in according t        | to the instruction manua                                                | ıl:              |                    |                    |                      |
| Factor (CF) between              | een the Dust I        | ed with a calibrated Hig<br>Monitor and High Volu<br>ted by HOKLAS labo | me Sampler.      |                    | was used to gene   | rate the Correlation |
| Calibrated by:                   |                       | M.                                                                      | _                | Approved by:       | -lem               | y Xon                |
| Technica                         | al Officer (Wo        | ng Shing Kwai)                                                          |                  |                    | et Manager (Henr   | 1                    |

Digital Dust Indicator



Date of Calibration 30-Jan-25

#### **Certificate of Calibration**

Description:

| Manufacturer:                                                                                                                                                      | Sibata Scientific Technology LTD.                                                                                                                                                                                                                                                                        |                                                                       | Validity of Calibration                    | ration Record 1-Apr-25                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|---------------------------------------|
| Model No.:                                                                                                                                                         | LD-5R                                                                                                                                                                                                                                                                                                    |                                                                       |                                            |                                       |
| Serial No.:                                                                                                                                                        | 972781                                                                                                                                                                                                                                                                                                   |                                                                       |                                            |                                       |
| Equipment No.:                                                                                                                                                     | SA-01-10                                                                                                                                                                                                                                                                                                 | Sensitivity                                                           | 0.001 mg/m3                                | _                                     |
| High Volume Sa                                                                                                                                                     | mpler No.: <u>A-01-03</u>                                                                                                                                                                                                                                                                                | Before Sensitiv                                                       | vity Adjustment                            | 734 CPM                               |
| Tisch Calibration                                                                                                                                                  | n Orifice No.: 3864                                                                                                                                                                                                                                                                                      | After Sensitivit                                                      | y Adjustment                               | 734 CPM                               |
|                                                                                                                                                                    | C                                                                                                                                                                                                                                                                                                        | alibration of 1 hr                                                    | · TSP                                      |                                       |
| Calibration                                                                                                                                                        | Laser Dust Monito                                                                                                                                                                                                                                                                                        | or                                                                    |                                            | HVS                                   |
| Point                                                                                                                                                              | Mass Concentration (μg                                                                                                                                                                                                                                                                                   | g/m3)                                                                 | Mas                                        | ss concentration (µg/m <sup>3</sup> ) |
|                                                                                                                                                                    | X-axis                                                                                                                                                                                                                                                                                                   |                                                                       |                                            | Y-axis                                |
| 1                                                                                                                                                                  | 79.0                                                                                                                                                                                                                                                                                                     |                                                                       |                                            | 135.0                                 |
| 2                                                                                                                                                                  | 67.0                                                                                                                                                                                                                                                                                                     |                                                                       |                                            | 114.0                                 |
| 3                                                                                                                                                                  | 60.0                                                                                                                                                                                                                                                                                                     |                                                                       |                                            | 100.0                                 |
| Average                                                                                                                                                            | 68.7                                                                                                                                                                                                                                                                                                     |                                                                       |                                            | 116.3                                 |
| Slope , mw =                                                                                                                                                       | 1.8321                                                                                                                                                                                                                                                                                                   | Interc                                                                | ept, bw =                                  | -9.4729                               |
| Correlation co                                                                                                                                                     | pefficient* = 0.999                                                                                                                                                                                                                                                                                      | 4                                                                     |                                            |                                       |
|                                                                                                                                                                    | S                                                                                                                                                                                                                                                                                                        | et Correlation Fa                                                     | actor                                      |                                       |
| Particaulate Con                                                                                                                                                   | S centration by High Volume Sampler                                                                                                                                                                                                                                                                      | et Correlation Fa                                                     | actor                                      | 116.3                                 |
| Particaulate Con                                                                                                                                                   | S<br>centration by High Volume Sampler<br>centration by Dust Meter (µg/m³)                                                                                                                                                                                                                               | et Correlation Fa                                                     | actor                                      | 68.7                                  |
| Particaulate Con Particaulate Con Measureing time                                                                                                                  | Secentration by High Volume Sampler centration by Dust Meter (μg/m³)                                                                                                                                                                                                                                     | et Correlation Fa                                                     | actor                                      |                                       |
| Particaulate Con Particaulate Con Measureing time Set Correlation F                                                                                                | Secentration by High Volume Sampler centration by Dust Meter (μg/m³)                                                                                                                                                                                                                                     | et Correlation Fa<br>(μg/m³)                                          | actor                                      | 68.7                                  |
| Particaulate Con Particaulate Con Measureing time Set Correlation F SCF = [K=High                                                                                  | Secentration by High Volume Sampler centration by Dust Meter (μg/m³) (c., (min))                                                                                                                                                                                                                         | et Correlation Fa<br>(μg/m³)                                          |                                            | 68.7                                  |
| Particaulate Con Particaulate Con Measureing time Set Correlation F SCF = [ K=High In-house method The Dust Monito Factor (CF) betw                                | S centration by High Volume Sampler centration by Dust Meter (µg/m³) c, (min) Factor, SCF h Volume Sampler / Dust Meter, (µ                                                                                                                                                                              | et Correlation Fa (μg/m³)  ag/m3)    al: igh Volume Samp ume Sampler. | 1.7 ler and The result                     | 68.7                                  |
| Particaulate Con Particaulate Con Measureing time Set Correlation F SCF = [K=High In-house method The Dust Monito Factor (CF) betw Those filter pap Calibrated by: | Secontration by High Volume Sampler centration by Dust Meter (μg/m³)  Exp. (min)  Factor, SCF  The Volume Sampler / Dust Meter, (μstandard Meter)  In according to the instruction manual or was compared with a calibrated High Volume Sampler bust Monitor and High Volumes are weighted by HOKLAS lab | et Correlation Fa (μg/m³)  ag/m3)    al: igh Volume Samp ume Sampler. | ler and The result  Litimed)  Approved by: | was used to generate the Correlation  |

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Report No. : 00736 Issue Date : 28 Jun 2024

Application No. : HP00592

**Certificate of Calibration** 

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Sound Level Calibrator.

Equipment No.: : N-16-01

Manufacturer: : Hangzhou Aihua Instruments Co., Ltd.

Other information : Model No. AWA6021A

Serial No. 1023253

Date Received : 27 Jun 2024

Test Period : 28 Jun 2024 to 28 Jun 2024

Test Requested : Performance checking for Sound Level Calibrator

Test Method : The Sound Level Meter and Calibrator has been calibrated in accordance with

the documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Report No. : 00736 | Issue Date : 28 Jun 2024

Application No. : HP00592

# **Certificate of Calibration**

Measuring equipment

| Description   | Sound Calibrator |
|---------------|------------------|
| Manufacturer  | Brüel & Kjær     |
| Model No.     | TYPE 4231        |
| Serial No.    | 2326353          |
| Equipment No. | N-02-01          |

| Description    | Sound Meter     |
|----------------|-----------------|
| Manufacturer   | BSWA Technology |
| Model No.      | BSWA 308        |
| Serial No.     | 570183          |
| Microphone No. | 570605          |
| Equipment No.  | N-12-01         |

Test Result

| Reference value, dB | Indication value, dB | Deviation, dB | Allowed deviation, dB |
|---------------------|----------------------|---------------|-----------------------|
| 94.0                | 94.1                 | + 0.1         | ± 0.3                 |
| 114.0               | 114.1                | + 0.1         | ± 0.5                 |

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
  - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Report No. : 01015 Issue Date : 04 Feb 2025

Application No. : HP00868

**Certificate of Calibration** 

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Sound Level Calibrator.

Equipment No.: : N-16-02

Manufacturer: : Hangzhou Aihua Instruments Co., Ltd.

Other information : Model No. AWA6021A

Serial No. 1023064

Date Received : 28 Jan 2025

Test Period : 03 Feb 2025 to 04 Feb 2025

Test Requested : Performance checking for Sound Level Calibrator

Test Method : The Sound Level Meter and Calibrator has been calibrated in accordance with

the documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Report No. : 01015 Issue Date : 04 Feb 2025

Application No. : HP00868

# **Certificate of Calibration**

Measuring equipment

| Description   | Sound Calibrator |
|---------------|------------------|
| Manufacturer  | Brüel & Kjær     |
| Model No.     | TYPE 4231        |
| Serial No.    | 2326353          |
| Equipment No. | N-02-01          |

| Description    | Sound Meter |
|----------------|-------------|
| Manufacturer   | SVANTEK     |
| Model No.      | SVAN 977    |
| Serial No.     | 92677       |
| Microphone No. | 10352       |
| Equipment No.  | N-14-01     |

Test Result

| Reference value, dB | Indication value, dB | Deviation, dB | Allowed deviation, dB |
|---------------------|----------------------|---------------|-----------------------|
| 94.0                | 94.2                 | + 0.2         | ± 0.3                 |
| 114.0               | 114.3                | + 0.3         | ± 0.5                 |

#### Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
  - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Report No. : 00870 | Issue Date : 14 Oct 2024

Application No. : HP00731

**Certificate of Calibration** 

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-08-12

Manufacturer: : SVANTEK

Other information :

| Model No.      | SVAN 957 |
|----------------|----------|
| Serial No.     | 23851    |
| Microphone No. | 22391    |

Date Received : 07 Oct 2024

Test Period : 09 Oct 2024 to 09 Oct 2024

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Application No. : HP00731

# **Certificate of Calibration**

Measuring equipment

| Description   | Sound Calibrator |
|---------------|------------------|
| Manufacturer  | Brüel & Kjær     |
| Model No.     | TYPE 4231        |
| Serial No.    | 2326353          |
| Equipment No. | N-02-01          |

Test Result

| Reference value, dB | Indication value, dB | Deviation, dB | Allowed deviation, dB |
|---------------------|----------------------|---------------|-----------------------|
| 94.0                | 94.0                 | ± 0.0         | ± 1.5                 |
| 114.0               | 114.2                | + 0.2         | ± 1.5                 |

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
  - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Application No. : HP00514

**Certificate of Calibration** 

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-12-01

Manufacturer: : BSWA Technology

Other information :

| Model No.      | BSWA 308 |
|----------------|----------|
| Serial No.     | 570183   |
| Microphone No. | 590073   |

Date Received : 09 Apr 2024

Test Period : 09 Apr 2024 to 09 Apr 2024

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Report No. : 00647 Issue Date : 11 Apr 2024

Application No. : HP00514

# **Certificate of Calibration**

Measuring equipment

| Description   | Sound Calibrator |
|---------------|------------------|
| Manufacturer  | Brüel & Kjær     |
| Model No.     | TYPE 4231        |
| Serial No.    | 2326353          |
| Equipment No. | N-02-01          |

Test Result

| Reference value, dB | Indication value, dB | Deviation, dB | Allowed deviation, dB |
|---------------------|----------------------|---------------|-----------------------|
| 94.0                | 94.1                 | + 0.1         | ± 1.5                 |
| 114.0               | 114.2                | + 0.2         | ± 1.5                 |

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
  - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Application No. : HP00732

**Certificate of Calibration** 

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-12-02

Manufacturer: : BSWA Technology

Other information :

| Model No.      | BSWA 308 |
|----------------|----------|
| Serial No.     | 570187   |
| Microphone No. | 590079   |

Date Received : 07 Oct 2024

Test Period : 09 Oct 2024 to 09 Oct 2024

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Application No. : HP00732

# **Certificate of Calibration**

Measuring equipment

| Description   | Sound Calibrator |  |
|---------------|------------------|--|
| Manufacturer  | Brüel & Kjær     |  |
| Model No.     | TYPE 4231        |  |
| Serial No.    | 2326353          |  |
| Equipment No. | N-02-01          |  |

Test Result

| Reference value, dB | Indication value, dB | Deviation, dB | Allowed deviation, dB |
|---------------------|----------------------|---------------|-----------------------|
| 94.0                | 93.9                 | - 0.1         | ± 1.5                 |
| 114.0               | 113.7                | - 0.3         | ± 1.5                 |

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
  - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Report No. : 00648 | Issue Date : 11 Apr 2024

Application No. : HP00515

**Certificate of Calibration** 

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-12-05

Manufacturer: : BSWA Technology

Other information :

| Model No.      | BSWA 308 |
|----------------|----------|
| Serial No.     | 580287   |
| Microphone No. | 570610   |

Date Received : 09 Apr 2024

Test Period : 09 Apr 2024 to 09 Apr 2024

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Report No. : 00648 | Issue Date : 11 Apr 2024

Application No. : HP00515

# **Certificate of Calibration**

Measuring equipment

| Description   | Sound Calibrator |  |
|---------------|------------------|--|
| Manufacturer  | Brüel & Kjær     |  |
| Model No.     | TYPE 4231        |  |
| Serial No.    | 2326353          |  |
| Equipment No. | N-02-01          |  |

Test Result :

| Reference value, dB | Indication value, dB | Deviation, dB | Allowed deviation, dB |
|---------------------|----------------------|---------------|-----------------------|
| 94.0                | 94.1                 | + 0.1         | ± 1.5                 |
| 114.0               | 114.1                | + 0.1         | ± 1.5                 |

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
  - 2. The indication value was obtained from the average of ten replicated measurement.