

#### **Certificate of Calibration - Wind Monitoring Station**

Description: Yau Lai Estate, Bik Lai House

Manufacturer: <u>Davis Instruments</u>

Model No.: Davis7440

Serial No.: <u>MC01010A44</u>

Equipment No.: SA-03-04

Date of Calibration <u>17-Aug-2024</u>

Next Due Date <u>17-Feb-2025</u>

#### 1. Performance check of Wind Speed

| Wind Sp                 | peed, m/s             | Difference D (m/s) |  |  |
|-------------------------|-----------------------|--------------------|--|--|
| Wind Speed Reading (V1) | Anemometer Value (V2) | D = V1 - V2        |  |  |
| 0.0 0.0                 |                       | 0.0                |  |  |
| 1.5                     | 1.6                   | -0.1               |  |  |
| 2.5                     | 2.3                   | 0.2                |  |  |
| 4.0 4.0                 |                       | 0.0                |  |  |

#### 2. Performance check of Wind Direction

| Wind Di                     | rection (°)               | Difference D (°) |
|-----------------------------|---------------------------|------------------|
| Wind Direction Reading (W1) | Marine Compass Value (W2) | D = W1 - W2      |
| 0                           | 0                         | 0.0              |
| 90                          | 90                        | 0.0              |
| 180                         | 180                       | 0.0              |
| 270                         | 270                       | 0.0              |

#### **Test Specification:**

- 1. Performance Wind Speed Test The wind meter was on-site calibrated against the anemometer
- 2. Performance Wind Direction Test The wind meter was on-site calibrated against the marine compass at four direction

Calibrated by:

Wong Shing Kwai

Approved by:

Henry Leung



# RECALIBRATION DUE DATE:

January 15, 2025

# Certificate of Calibration

**Calibration Certification Information** 

Cal. Date: January 15, 2024

Rootsmeter S/N: 438320

Ta: 294

°K

Operator: Jim Tisch

**Pa:** 755.4

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 3864

| Run | Vol. Init<br>(m3) | Vol. Final<br>(m3) | ΔVol.<br>(m3) | ΔTime<br>(min) | ΔP<br>(mm Hg) | ΔH<br>(in H2O) |
|-----|-------------------|--------------------|---------------|----------------|---------------|----------------|
| 1   | 1                 | 2                  | 1             | 1.4380         | 3.3           | 2.00           |
| 2   | 3                 | 4                  | 1             | 1.0270         | 6.4           | 4.00           |
| 3   | 5                 | 6                  | 1             | 0.9180         | 8.0           | 5.00           |
| 4   | 7                 | 8                  | 1             | 0.8750         | 8.9           | 5.50           |
| 5   | 9                 | 10                 | 1             | 0.7230         | 12.9          | 8.00           |

|             | Data Tabulation |                                                                             |        |          |                           |  |  |
|-------------|-----------------|-----------------------------------------------------------------------------|--------|----------|---------------------------|--|--|
| Vstd        | Qstd            | $\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$ |        | Qa       | $\sqrt{\Delta H (Ta/Pa)}$ |  |  |
| (m3)        | (x-axis)        | (y-axis)                                                                    | Va     | (x-axis) | (y-axis)                  |  |  |
| 1.0031      | 0.6975          | 1.4195                                                                      | 0.9956 | 0.6924   | 0.8823                    |  |  |
| 0.9989      | 0.9727          | 2.0075                                                                      | 0.9915 | 0.9655   | 1.2477                    |  |  |
| 0.9968      | 1.0858          | 2.2444                                                                      | 0.9894 | 1.0778   | 1.3950                    |  |  |
| 0.9956      | 1.1378          | 2.3539                                                                      | 0.9882 | 1.1294   | 1.4631                    |  |  |
| 0.9903      | 1.3697          | 2.8390                                                                      | 0.9829 | 1.3595   | 1.7645                    |  |  |
|             | m=              | 2.11196                                                                     |        | m=       | 1.32248                   |  |  |
| <b>QSTD</b> | b=              | -0.05043                                                                    | QA     | b=       | -0.03134                  |  |  |
|             | r=              | 0.99998                                                                     | 4 .    | r=       | 0.99998                   |  |  |

|       | Calculatio                                                                                               | ns                  |                                                         |  |
|-------|----------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------|--|
| Vstd= | ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)                                                                              | Va=                 | ΔVol((Pa-ΔP)/Pa)                                        |  |
| Qstd= | Vstd/∆Time                                                                                               | <b>Qa=</b> Va/ΔTime |                                                         |  |
|       | For subsequent flow ra                                                                                   | te calculatio       | ns:                                                     |  |
| Qstd= | $1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$ | Qa=                 | $1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$ |  |

| Standard Conditions                       |           |  |  |  |
|-------------------------------------------|-----------|--|--|--|
| Tstd:                                     | 298.15 °K |  |  |  |
| Pstd:                                     | 760 mm Hg |  |  |  |
|                                           | Key       |  |  |  |
| ΔH: calibrator manometer reading (in H2O) |           |  |  |  |
| ΔP: rootsmeter manometer reading (mm Hg)  |           |  |  |  |
| Ta: actual absolute temperature (°K)      |           |  |  |  |
| Pa: actual barometric pressure (mm Hg)    |           |  |  |  |
| b: intercept                              |           |  |  |  |
| m: slope                                  |           |  |  |  |

#### RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610 FAX: (513)467-9009





# RECALIBRATION DUE DATE:

January 7, 2026

# Certificate of Calibration

**Calibration Certification Information** 

Cal. Date: January 7, 2025 Rootsmeter S/N: 438320 Ta: 293 °K

Operator: Jim Tisch Pa: 759.0 mm Hg

Calibration Model #: TE-5025A Calibrator S/N: 3864

| Run | Vol. Init<br>(m3) | Vol. Final<br>(m3) | ΔVol.<br>(m3) | ΔTime<br>(min) | ΔP<br>(mm Hg) | ΔH<br>(in H2O) |
|-----|-------------------|--------------------|---------------|----------------|---------------|----------------|
| 1   | 1                 | 2                  | 1             | 1.4590         | 3.2           | 2.00           |
| 2   | 3                 | 4                  | 1             | 1.0360         | 6.4           | 4.00           |
| 3   | 5                 | 6                  | 1             | 0.9160         | 8.0           | 5.00           |
| 4   | 7                 | 8                  | 1             | 0.8800         | 8.8           | 5.50           |
| 5   | 9                 | 10                 | 1             | 0.7270         | 12.7          | 8.00           |

|        | Data Tabulation |                                                                             |        |          |                          |  |  |
|--------|-----------------|-----------------------------------------------------------------------------|--------|----------|--------------------------|--|--|
| Vstd   | Qstd            | $\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$ |        | Qa       | $\sqrt{\Delta H(Ta/Pa)}$ |  |  |
| (m3)   | (x-axis)        | (y-axis)                                                                    | Va     | (x-axis) | (y-axis)                 |  |  |
| 1.0114 | 0.6932          | 1.4252                                                                      | 0.9958 | 0.6825   | 0.8787                   |  |  |
| 1.0071 | 0.9721          | 2.0156                                                                      | 0.9916 | 0.9571   | 1.2427                   |  |  |
| 1.0050 | 1.0971          | 2.2535                                                                      | 0.9895 | 1.0802   | 1.3893                   |  |  |
| 1.0039 | 1.1408          | 2.3635                                                                      | 0.9884 | 1.1232   | 1.4572                   |  |  |
| 0.9987 | 1.3737          | 2.8505                                                                      | 0.9833 | 1.3525   | 1.7574                   |  |  |
|        | m=              | 2.08969                                                                     |        | m=       | 1.30853                  |  |  |
| QSTD   | b=              | -0.02374                                                                    | QA     | b=       | -0.01464                 |  |  |
|        | r=              | 0.99985                                                                     | ,      | r=       | 0.99985                  |  |  |

|       | Calculations                                                                                             |              |                                                                    |  |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------|--|--|--|--|
|       | ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)                                                                              | Va=          | ΔVol((Pa-ΔP)/Pa)                                                   |  |  |  |  |
| Qstd= | Vstd/∆Time                                                                                               | Qa= Va/ΔTime |                                                                    |  |  |  |  |
|       | For subsequent flow rate calculations:                                                                   |              |                                                                    |  |  |  |  |
| Qstd= | $1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$ | Qa=          | $1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$ |  |  |  |  |

| Standard Conditions                      |                               |  |  |  |
|------------------------------------------|-------------------------------|--|--|--|
| Tstd:                                    | 298.15 °K                     |  |  |  |
| Pstd:                                    | 760 mm Hg                     |  |  |  |
|                                          | Key                           |  |  |  |
|                                          | or manometer reading (in H2O) |  |  |  |
| ΔP: rootsmeter manometer reading (mm Hg) |                               |  |  |  |
| Ta: actual absolute temperature (°K)     |                               |  |  |  |
| Pa: actual barometric pressure (mm Hg)   |                               |  |  |  |
| b: intercept                             |                               |  |  |  |
| m: slope                                 |                               |  |  |  |

#### RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

FAX: (513)467-9009

# **High-Volume TSP Sampler** 5-POINT CALIBRATION DATA SHEET



File No. MA16034/05/0051

| Project No.       | AM1 - Tin Hau              | Temple                                    |                                                                  |                                |                                  |                               |                                     |
|-------------------|----------------------------|-------------------------------------------|------------------------------------------------------------------|--------------------------------|----------------------------------|-------------------------------|-------------------------------------|
| Date:             | 14-D                       | ec-24                                     | Next Due Date:                                                   | 14-                            | Feb-25                           | Operator:                     | SK                                  |
| Equipment No.:    | A-0                        | 1-05                                      | Model No.:                                                       | GS2310                         |                                  | Serial No.                    | 10599                               |
|                   |                            |                                           | Ambient C                                                        | andition                       |                                  |                               |                                     |
| Temperatur        | re Ta (K)                  | 288.5                                     | Pressure, Pa                                                     |                                |                                  | 768.6                         |                                     |
| Temperatur        | ic, 14 (11)                | 200.5                                     | 11035410, 14                                                     | (mmrg)                         |                                  | 700.0                         |                                     |
|                   |                            | Or                                        | ifice Transfer Star                                              | ndard Informa                  | ation                            |                               |                                     |
| Serial            | No.                        | 3864                                      | Slope, mc                                                        | 0.05976                        | Intercept                        | t, bc                         | -0.05018                            |
| Last Calibra      | ntion Date:                | 15-Jan-24                                 |                                                                  |                                | $c = [\Delta H \times (Pa/760]]$ |                               |                                     |
| Next Calibra      | ation Date:                | 14-Jan-25                                 |                                                                  | $Qstd = \{ [\Delta H \ x ] \}$ | (Pa/760) x (298/7                | Γa)] <sup>1/2</sup> -bc} / mo |                                     |
|                   |                            |                                           |                                                                  |                                |                                  |                               |                                     |
|                   |                            |                                           | Calibration of 7                                                 | ΓSP Sampler                    |                                  |                               |                                     |
| Calibration       |                            | Oı                                        | fice                                                             |                                |                                  | HVS                           | 1/0                                 |
| Point             | ΔH (orifice), in. of water | [ΔH x (Pa/760) x (298/Ta)] <sup>1/2</sup> |                                                                  | Qstd (CFM) X - axis            | ΔW (HVS), in. of water           |                               | 0) x (298/Ta)] <sup>1/2</sup> -axis |
| 1                 | 13.2                       | 3.71                                      |                                                                  | 62.98                          | 8.5                              | 2                             | 2.98                                |
| 2                 | 10.1                       | 3.25                                      |                                                                  | 55.19                          | 6.5                              | 2                             | 2.61                                |
| 3                 | 7.2                        | 2.74                                      |                                                                  | 46.73                          | 4.3                              | 2                             | 2.12                                |
| 4                 | 5.0                        |                                           | 2.29                                                             | 39.08                          | 2.6                              | 1                             | .65                                 |
| 5                 | 2.8                        |                                           | 1.71                                                             | 29.46                          | 1.4                              | 1                             | .21                                 |
| By Linear Regr    | ession of Y on Y           | <b>K</b>                                  |                                                                  |                                |                                  |                               |                                     |
| Slope , mw =      | 0.0540                     | _                                         | ]                                                                | Intercept, bw :                | -0.410                           | 6                             |                                     |
| Correlation of    | coefficient* =             | 0                                         | .9988                                                            |                                |                                  |                               |                                     |
| *If Correlation C | Coefficient < 0.99         | 90, check and rec                         | calibrate.                                                       |                                |                                  |                               |                                     |
|                   |                            |                                           | Set Point Ca                                                     | alculation                     |                                  |                               |                                     |
| From the TSP Fi   | eld Calibration (          | Curve, take Qstd                          | = 43 CFM                                                         |                                |                                  |                               |                                     |
| From the Regress  | sion Equation, th          | ne "Y" value acco                         | ording to                                                        |                                |                                  |                               |                                     |
|                   |                            | mw v (                                    | $\mathbf{pstd} + \mathbf{bw} = [\mathbf{\Delta W} \ \mathbf{x}]$ | (Pa/760) v (20                 | 08/Ta)1 <sup>1/2</sup>           |                               |                                     |
|                   |                            | IIIW X (                                  | zstu + DW – LΔW x                                                | (F a/ /00) X (2)               | 76/1a)j                          |                               |                                     |
| Therefore, Se     | et Point; W = ( m          | nw x Qstd + bw)                           | <sup>2</sup> x ( 760 / Pa ) x ( 7                                | Γa / 298 ) =                   | 3.50                             |                               |                                     |
|                   |                            |                                           |                                                                  |                                |                                  |                               |                                     |
| Remarks:          |                            |                                           |                                                                  |                                |                                  |                               |                                     |
| •                 |                            |                                           |                                                                  |                                |                                  |                               |                                     |
|                   |                            |                                           |                                                                  | 10                             | - 1                              |                               |                                     |
| Conducted by:     | Wong St                    | ning Kwai                                 | Signature:                                                       | X                              | <u> </u>                         | Date                          | 14-Dec-24                           |
| conducted by.     | THOIR DI                   |                                           | Signature.                                                       |                                | X 29 27                          |                               | 11 200 27                           |
| Checked by:       | Henry                      | Leung                                     | Signature:                                                       | \-lem                          | y day                            | Date:                         | 14-Dec-24                           |

# **High-Volume TSP Sampler**

#### 5-POINT CALIBRATION DATA SHEET



File No. MA16034/08/0051

| Project No.                           | AM2 - Sai Tso                      | Wan Recreation         | Ground                                                           |                            |                            |            |                                     |  |
|---------------------------------------|------------------------------------|------------------------|------------------------------------------------------------------|----------------------------|----------------------------|------------|-------------------------------------|--|
| Date:                                 | 14-D                               | ec-24                  | Next Due Date:                                                   | e: 14-Feb-25<br>.:: GS2310 |                            | Operator:  | SK                                  |  |
| Equipment No.:                        | A-0                                | 1-08                   | Model No.:                                                       |                            |                            | Serial No. | 1287                                |  |
|                                       |                                    |                        | Ambient C                                                        | ondition                   |                            |            |                                     |  |
| Temperatur                            | re, Ta (K)                         | 288.5                  | Pressure, Pa                                                     | (mmHg)                     |                            | 768.6      |                                     |  |
|                                       |                                    |                        |                                                                  |                            |                            |            |                                     |  |
| Serial                                | No                                 | 3864                   | Slope, mc                                                        | ndard Informa<br>0.05976   | ation<br>Intercept         | · ho       | -0.05018                            |  |
| Last Calibra                          |                                    | 15-Jan-24              |                                                                  |                            |                            |            |                                     |  |
| Next Calibra                          |                                    | 13-Jan-24<br>14-Jan-25 | 1/2                                                              |                            |                            |            |                                     |  |
| TVOXE CUITOTE                         | ation Bute.                        |                        |                                                                  | <u> </u>                   | (1 4, 7 0 0 ) 12 (2 5 0) 3 | ,          | ·                                   |  |
|                                       |                                    |                        | Calibration of                                                   | TSP Sampler                |                            |            |                                     |  |
| Calibration                           |                                    | Or                     | fice                                                             |                            |                            | HVS        |                                     |  |
| Point                                 | $\Delta H$ (orifice), in. of water | [ΔH x (Pa/76           | [ΔH x (Pa/760) x (298/Ta)] <sup>1/2</sup>                        |                            | ΔW (HVS), in. of water     |            | 0) x (298/Ta)] <sup>1/2</sup> -axis |  |
| 1                                     | 13.3                               |                        | 3.73                                                             | 63.21                      | 8.2                        | 2          | 2.93                                |  |
| 2                                     | 10.3                               |                        | 3.28                                                             |                            | 6.3                        | 2          | 2.57                                |  |
| 3                                     | 7.5                                |                        | 2.80                                                             | 47.68                      | 4.0                        | 2          | 2.04                                |  |
| 4                                     | 5.2                                |                        | 2.33                                                             | 39.84                      | 2.5                        | 1          | 1.62                                |  |
| 5                                     | 3.0                                |                        | 1.77                                                             | 30.46                      | 1.5                        | 1          | 1.25                                |  |
| Slope , mw = Correlation C            | coefficient* =                     |                        | .9964                                                            | Intercept, bw :            | -0.415                     | 7          |                                     |  |
|                                       |                                    |                        | Set Point Ca                                                     | alculation                 |                            |            |                                     |  |
| From the TSP Fi                       | eld Calibration C                  | Curve, take Qstd       |                                                                  |                            |                            |            |                                     |  |
| From the Regress                      |                                    |                        |                                                                  |                            |                            |            |                                     |  |
|                                       |                                    | _                      |                                                                  | ·                          | 20 15 22 1/2               |            |                                     |  |
|                                       |                                    | mw x (                 | $\mathbf{Qstd} + \mathbf{bw} = [\mathbf{\Delta W} \ \mathbf{x}]$ | (Pa/760) x (29             | 98/Ta)] <sup>22</sup>      |            |                                     |  |
| Therefore, Se                         | et Point; W = ( m                  | w x Qstd + bw )        | <sup>2</sup> x ( 760 / Pa ) x ( 7                                | Γa / 298 ) =               | 3.28                       |            |                                     |  |
|                                       |                                    |                        |                                                                  |                            |                            |            |                                     |  |
|                                       |                                    |                        |                                                                  |                            |                            |            |                                     |  |
| Remarks:                              |                                    |                        |                                                                  |                            |                            |            |                                     |  |
| ·                                     |                                    |                        |                                                                  |                            |                            |            |                                     |  |
| •                                     |                                    |                        |                                                                  |                            |                            |            |                                     |  |
|                                       |                                    |                        |                                                                  | - 10                       | - 1                        |            |                                     |  |
| Conducted by:                         | Wong Sh                            | ing Kwai               | Signature:                                                       | X                          | <u>}\_</u> -               | Date:      | 14-Dec-24                           |  |
| , , , , , , , , , , , , , , , , , , , | <u> </u>                           |                        |                                                                  | 1                          | -                          |            |                                     |  |
| Checked by:                           | Henry                              | Leung                  | Signature:                                                       | - lem                      | y Xory                     | Date:      | 14-Dec-24                           |  |

# **High-Volume TSP Sampler** 5-POINT CALIBRATION DATA SHEET



File No. MA16034/03/0051

| Project No.                                                 | AM3 - Yau Lai Estate, Bik Lai House |                        |                                |                     |                                            |                |                                      |
|-------------------------------------------------------------|-------------------------------------|------------------------|--------------------------------|---------------------|--------------------------------------------|----------------|--------------------------------------|
| Date:                                                       | 14-Dec-24                           |                        | Next Due Date:                 | : 14-Feb-25         |                                            | Operator:      | SK                                   |
| Equipment No.:                                              | .: A-01-03                          |                        | Model No.:                     | GS                  | S2310                                      | Serial No.     | 10379                                |
|                                                             |                                     |                        | •                              |                     |                                            |                |                                      |
|                                                             | T                                   |                        | Ambient C                      | ondition            |                                            |                |                                      |
| Temperatur                                                  | re, Ta (K)                          | 288.5                  | Pressure, Pa                   | (mmHg)              |                                            | 768.6          |                                      |
|                                                             |                                     |                        |                                | 1 17 0              |                                            |                |                                      |
| Serial                                                      | No                                  | 3864                   | ifice Transfer Star            | 0.05976             | I                                          | ho             | -0.05018                             |
| Last Calibra                                                |                                     | 15-Jan-24              | Slope, mc                      |                     | Intercept $c = [\Delta H \times (Pa/760)]$ |                |                                      |
| Next Calibra                                                | Ì                                   | 13-Jan-24<br>14-Jan-25 |                                |                     | $(Pa/760) \times (298/7)$                  |                |                                      |
| TVCAL CAHOLO                                                | ition Date.                         |                        |                                | <u> </u>            | (1 u/100) h (2)0/                          | (a) (bc) / III |                                      |
|                                                             |                                     | •                      | Calibration of 7               | TSP Sampler         |                                            |                |                                      |
| Calibration                                                 |                                     | Oı                     | fice                           | •                   |                                            | HVS            |                                      |
| Point                                                       | ΔH (orifice), in. of water          | [ΔH x (Pa/76           | 50) x (298/Ta)] <sup>1/2</sup> | Qstd (CFM) X - axis | ΔW (HVS), in. of water                     | · ·            | 60) x (298/Ta)] <sup>1/2</sup> -axis |
| 1                                                           | 12.9                                |                        | 3.67                           | 62.27               | 8.0                                        | 2              | 2.89                                 |
| 2                                                           | 10.2                                |                        | 3.26                           | 55.46               | 6.2                                        | 2              | 2.54                                 |
| 3                                                           | 7.7                                 |                        | 2.84                           | 48.30               | 4.2                                        | 2              | 2.09                                 |
| 4                                                           | 5.2                                 |                        | 2.33                           | 39.84               | 2.7                                        | 1              | 1.68                                 |
| 5                                                           | 2.9                                 |                        | 1.74                           | 29.96               | 1.6                                        | 1              | 1.29                                 |
| By Linear Regressions Slope, mw = Correlation Correlation C | 0.0503<br>coefficient* =            | 0                      | .9965                          | Intercept, bw :     | -0.272                                     | 9              |                                      |
|                                                             |                                     |                        | Set Point Ca                   | alculation          |                                            |                |                                      |
| From the TSP Fig<br>From the Regress<br>Therefore, Se       | sion Equation, th                   | mw x (                 |                                |                     | 98/Ta)] <sup>1/2</sup>                     |                |                                      |
| Remarks:                                                    |                                     |                        |                                |                     |                                            |                |                                      |
| Conducted by:                                               | Wong Sh                             | ning Kwai              | Signature:                     |                     | <u> </u>                                   | Date:          | 14-Dec-24                            |
| Checked by:                                                 | Henry                               | Leung                  | Signature:                     | \-lem               | y day                                      | Date:          | 14-Dec-24                            |

# High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET



File No. MA20003/55/029 Project No. CKL 2 - Flat 103 Cha Kwo Ling Village 4-Nov-24 Next Due Date: 4-Jan-25 Date: Operator: SK Equipment No.: A-01-55 Model No.: TE 5170 Serial No. 1956 **Ambient Condition** 302 Temperature, Ta (K) Pressure, Pa (mmHg) 762.7 **Orifice Transfer Standard Information** 0.05976 Intercept, bc 3864 Slope, mc Serial No. -0.05018  $mc \times Ostd + bc = [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 15-Jan-24 Qstd =  $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ 14-Jan-25 Next Calibration Date: **Calibration of TSP Sampler** Orfice Calibration  $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$  $\Delta H$  (orifice), Ostd (CFM)  $\Delta W$  (HVS), in.  $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Point in. of water X - axis of water Y-axis 1 13.5 3.66 62.02 9.3 3.03 2.69 2 11.3 3.35 56.82 7.3 3.02 51.35 5.9 2.42 4 2.33 39.89 2.8 1.67 3.5 31.99 1.9 1.37 5 1.86 By Linear Regression of Y on X Slope , mw = 0.0566 Intercept, bw :\_\_\_\_ -0.5013 Correlation coefficient\* = 0.9966 \*If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw =  $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point;  $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$  3.76 Remarks: Conducted by: Wong Shing Kwai Checked by: Henry Leung

# High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET



File No. MA20003/55/030 Project No. CKL 2 - Flat 103 Cha Kwo Ling Village 4-Jan-25 Next Due Date: 6-Mar-25 Operator: SK Date: Equipment No.: A-01-55 Model No.: TE 5170 Serial No. 1956 **Ambient Condition** 292.7 Temperature, Ta (K) Pressure, Pa (mmHg) 765.4 **Orifice Transfer Standard Information** 0.05976 Intercept, bc 3864 Slope, mc Serial No. -0.05018  $mc \times Ostd + bc = [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 15-Jan-24 Qstd =  $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ 14-Jan-25 Next Calibration Date: **Calibration of TSP Sampler** Orfice Calibration  $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$  $\Delta H$  (orifice), Ostd (CFM)  $\Delta W$  (HVS), in.  $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Point in. of water X - axis of water Y-axis 3.07 1 13.6 3.73 63.33 9.2 11.2 2.74 2 3.39 57.55 7.3 3.04 51.67 5.7 2.42 4 5.3 2.33 39.85 2.6 1.63 3.6 32.99 1.8 5 1.92 1.36 By Linear Regression of Y on X Slope , mw = 0.0581 Intercept, bw : -0.6068 Correlation coefficient\* = 0.9980 \*If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw =  $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point;  $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$  3.49 Remarks: Conducted by: Wong Shing Kwai Checked by: Henry Leung



#### **Certificate of Calibration**

| Description:                      | Laser Dust Mo                                                             | nitor                                |                              |               | Date o                | f Calibration                  | 30-Nov-24          |
|-----------------------------------|---------------------------------------------------------------------------|--------------------------------------|------------------------------|---------------|-----------------------|--------------------------------|--------------------|
| Manufacturer:                     |                                                                           | ic Technology L                      | TD.                          |               | Validity of Calibra   |                                |                    |
| Model No.:                        | LD-3B                                                                     |                                      |                              |               |                       |                                |                    |
| Serial No.:                       | 2Y6194                                                                    | i                                    |                              |               |                       |                                |                    |
| Equipment No.:                    |                                                                           |                                      |                              | Sensitivity   | 0.001 mg/m3           |                                |                    |
|                                   |                                                                           | A 01 02                              |                              | •             |                       | 570                            |                    |
| High Volume Sa                    | •                                                                         | A-01-03                              |                              |               | tivity Adjustment     | 578                            |                    |
| Tisch Calibratio                  | n Onlice No.:                                                             | 3864                                 |                              | After Sensiti | vity Adjustment       | 578                            |                    |
|                                   |                                                                           |                                      | Calibrat                     | ion of 1 hr T | SP                    |                                |                    |
| Calibration                       |                                                                           | Laser Dust                           |                              |               |                       | HVS                            |                    |
| Point                             | Total Count                                                               | C                                    | Count / Minute X-axis        |               | Mass                  | concentration (µ <b>Y-axis</b> | $\lg/m^3$ )        |
| 1                                 | 4000                                                                      |                                      | 75.0                         |               |                       | 142.0                          |                    |
| 2                                 | 3600                                                                      |                                      | 65.0                         |               |                       | 120.0                          |                    |
| 3                                 | 3000                                                                      |                                      | 55.0                         |               |                       | 100.0                          |                    |
| Ave                               | rage                                                                      |                                      | 65.0                         |               |                       | 120.7                          |                    |
| Slope, mw =                       | ression of Y on 2.10                                                      |                                      |                              | Inter         | rcept, bw =           | -15.833                        | 3                  |
| Correl                            | ation coefficien                                                          | t* =                                 | 0.999                        | 06            |                       |                                |                    |
| Set Correlation 1 SCF = [ K=Hig   | Factor , SCF<br><b>h Volume Sam</b> j                                     | oler / Dust Meto                     | er, (μg/m3)]                 |               | 1.9                   |                                |                    |
| The Dust Monit<br>(CF) between th | d in according to<br>or was compared<br>e Dust Monitor<br>pers are weight | d with a calibrate<br>and High Volun | ed High Volum<br>ne Sampler. |               | d The result was used | d to generate the              | Correlation Factor |
| Calibrated by:<br>Techni          | cal Officer (Wo                                                           | ng Shing Kwai)                       |                              |               | Approved by: _        | Project Manager                | (Henry Leung)      |

Digital Dust Indicator



30-Nov-24

Date of Calibration

#### **Certificate of Calibration**

Description:

| -                                                         |                       |                                 |                   |                    |                     |                      |
|-----------------------------------------------------------|-----------------------|---------------------------------|-------------------|--------------------|---------------------|----------------------|
| Manufacturer:                                             | Sibata Scient         | ific Technology LTD.            | _                 | Validity of Calibr | ration Record       | 30-Jan-25            |
| Model No.:                                                | LD-5R                 |                                 |                   |                    |                     |                      |
| Serial No.:                                               | 8Y2374                |                                 |                   |                    |                     |                      |
| Equipment No.:                                            | SA-01-04              |                                 | Sensitivity       | 0.001 mg/m3        | <u>.</u>            |                      |
| High Volume Sa                                            | impler No.:           | A-01-03                         | Before Sensitiv   | rity Adjustment    | 652                 |                      |
| Tisch Calibratio                                          | n Orifice No.:        | 3864                            | After Sensitivit  | y Adjustment       | 652                 |                      |
|                                                           |                       | Ca                              | libration of 1 hi | TSP                |                     |                      |
| Calibration Laser Dust Monitor                            |                       |                                 | HVS               |                    |                     |                      |
| Point                                                     | N                     | fass Concentration (μg/         | (m3)              | Mas                | ss concentration (µ | $\lg/m^3$ )          |
|                                                           |                       | X-axis                          |                   | Y-axis             |                     |                      |
| 1                                                         |                       | 74.0                            |                   |                    | 136.0               |                      |
| 2                                                         |                       | 64.0                            |                   |                    | 119.0               |                      |
| 3                                                         |                       | 54.0                            |                   |                    | 100.0               |                      |
| Average                                                   |                       | 64.0                            |                   |                    | 118.3               |                      |
| Slope , mw =<br>Correlation co                            | 1.80<br>pefficient* = | 0.9995                          |                   | ept, bw =          | 3.1333              |                      |
|                                                           |                       | Se                              | t Correlation Fa  | actor              |                     |                      |
| Particaulate Con                                          | centration by l       | High Volume Sampler (           | $(\mu g/m^3)$     | 118.3              |                     |                      |
| Particaulate Con                                          | centration by I       | Dust Meter (μg/m <sup>3</sup> ) |                   | 64.0               |                     |                      |
| Measureing time                                           | e, (min)              |                                 |                   | 60.0               |                     |                      |
| Set Correlation I                                         | Factor, SCF           |                                 |                   |                    |                     |                      |
| SCF = [ K=High Volume Sampler / Dust Meter, (µg/m3) ] 1.8 |                       |                                 |                   |                    |                     |                      |
| In-house method                                           | l in according t      | to the instruction manua        | al:               |                    |                     |                      |
|                                                           | -                     | ed with a calibrated Hig        | -                 | ler and The result | was used to gener   | rate the Correlation |
|                                                           |                       | Monitor and High Volu           | =                 | - • . •            |                     |                      |
| Those filter pap                                          | ers are weigh         | nted by HOKLAS labo             | oratory (HPCT )   | Litimed)           |                     |                      |
|                                                           |                       |                                 |                   |                    |                     |                      |
| Calibrated by:                                            |                       | M.                              | _                 | Approved by:       | \-lem               | y Xon                |
| Technic                                                   | al Officer (Wo        | ong Shing Kwai)                 |                   | Projec             | et Manager (Henry   | Leung)               |

Digital Dust Indicator



30-Nov-24

Date of Calibration

#### **Certificate of Calibration**

Description:

| Manufacturer:                        | Sibata Scientific Technology LTD.                                                                                                                     | Validity of Calib                                | ration Record 30-Jan-25                 |  |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|--|--|
| Model No.:                           | LD-5R                                                                                                                                                 |                                                  |                                         |  |  |
| Serial No.:                          | 8Y2373                                                                                                                                                |                                                  |                                         |  |  |
| Equipment No.:                       | SA-01-05                                                                                                                                              | Sensitivity 0.001 mg/m3                          | _                                       |  |  |
| High Volume Sa                       | ampler No.: A-01-03                                                                                                                                   | Before Sensitivity Adjustment                    | 657                                     |  |  |
| Tisch Calibration                    | n Orifice No.: 3864                                                                                                                                   | After Sensitivity Adjustment                     | 657                                     |  |  |
|                                      | Ca                                                                                                                                                    | alibration of 1 hr TSP                           |                                         |  |  |
| Calibration                          | Laser Dust Monito                                                                                                                                     | r                                                | HVS                                     |  |  |
| Point                                | Mass Concentration (μg.                                                                                                                               | /m3) Ma                                          | Mass concentration (μg/m <sup>3</sup> ) |  |  |
|                                      | X-axis                                                                                                                                                |                                                  | Y-axis                                  |  |  |
| 1                                    | 75.0                                                                                                                                                  |                                                  | 134.0                                   |  |  |
| 2                                    | 65.0                                                                                                                                                  |                                                  | 118.0                                   |  |  |
| 3                                    | 55.0                                                                                                                                                  |                                                  | 100.0                                   |  |  |
| Average                              | 65.0                                                                                                                                                  |                                                  | 117.3                                   |  |  |
| Correlation co                       |                                                                                                                                                       |                                                  |                                         |  |  |
|                                      |                                                                                                                                                       | et Correlation Factor                            |                                         |  |  |
|                                      | ncentration by High Volume Sampler                                                                                                                    | (μg/m <sup>2</sup> )                             | 117.3                                   |  |  |
|                                      | ncentration by Dust Meter (μg/m³)                                                                                                                     |                                                  | 65.0<br>60.0                            |  |  |
| Measureing time Set Correlation I    |                                                                                                                                                       |                                                  | 60.0                                    |  |  |
|                                      | h Volume Sampler / Dust Meter, (μ                                                                                                                     | g/m3) ]1.8                                       |                                         |  |  |
| The Dust Monitor<br>Factor (CF) betw | I in according to the instruction manuor was compared with a calibrated Hiween the Dust Monitor and High Volumers are weighted by HOKLAS laborations. | gh Volume Sampler and The result<br>ime Sampler. | was used to generate the Correlation    |  |  |
| Calibrated by:                       | al Officer (Wong Shing Kwai)                                                                                                                          | Approved by:                                     | ct Manager (Henry Leung)                |  |  |

Digital Dust Indicator



30-Nov-24

Date of Calibration

#### **Certificate of Calibration**

Description:

| -                                                         |                 |                                 |                  |                     |                   |                      |
|-----------------------------------------------------------|-----------------|---------------------------------|------------------|---------------------|-------------------|----------------------|
| Manufacturer:                                             | Sibata Scient   | ific Technology LTD.            | _                | Validity of Calibr  | ration Record     | 30-Jan-25            |
| Model No.:                                                | LD-5R           |                                 |                  |                     |                   |                      |
| Serial No.:                                               | 972777          |                                 |                  |                     |                   |                      |
| Equipment No.:                                            | SA-01-06        |                                 | Sensitivity      | 0.001 mg/m3         | ·                 |                      |
| High Volume Sa                                            | mpler No.:      | A-01-03                         | Before Sensitiv  | vity Adjustment     | 645               |                      |
| Tisch Calibratio                                          | n Orifice No.:  | 3864                            | After Sensitivi  | ty Adjustment       | 645               |                      |
|                                                           |                 | Ca                              | libration of 1 h | · TSP               |                   |                      |
| Calibration Laser Dust Monitor                            |                 | •                               |                  | HVS                 |                   |                      |
| Point                                                     | N.              | fass Concentration (μg/         | /m3)             | Mas                 | s concentration ( | ug/m <sup>3</sup> )  |
|                                                           |                 | X-axis                          |                  | Y-axis              |                   |                      |
| 1                                                         |                 | 74.0                            |                  |                     | 134.0             |                      |
| 2                                                         |                 | 64.0                            |                  |                     | 116.0             |                      |
| 3                                                         |                 | 54.0                            |                  |                     | 100.0             |                      |
| Average                                                   |                 | 64.0                            |                  |                     | 116.7             |                      |
| Slope , mw =<br>Correlation co                            |                 | 0.9994                          |                  | ept, bw =           | 7.8667            |                      |
|                                                           |                 | Se                              | t Correlation F  | actor               |                   |                      |
| Particaulate Con                                          | centration by l | High Volume Sampler (           | $(\mu g/m^3)$    |                     | 116.7             |                      |
| Particaulate Con                                          | centration by l | Dust Meter (μg/m <sup>3</sup> ) |                  | 64.0                |                   |                      |
| Measureing time                                           | e, (min)        |                                 |                  | 60.0                |                   |                      |
| Set Correlation I                                         | Factor, SCF     |                                 |                  |                     |                   |                      |
| SCF = [ K=High Volume Sampler / Dust Meter, (µg/m3) ] 1.8 |                 |                                 |                  |                     |                   |                      |
| In-house method                                           | in according t  | to the instruction manua        | al:              |                     |                   |                      |
|                                                           | -               | ed with a calibrated Hig        |                  | oler and The result | was used to gene  | rate the Correlation |
|                                                           |                 | Monitor and High Volu           | -                |                     |                   |                      |
| Those filter pap                                          | ers are weigh   | ited by HOKLAS labo             | oratory (HPCT)   | Litimed)            |                   |                      |
|                                                           |                 |                                 |                  |                     |                   |                      |
| Calibrated by:                                            |                 | M.                              | _                | Approved by:        | -lem              | y Xon                |
| Technic                                                   | al Officer (Wo  | ong Shing Kwai)                 |                  | Projec              | et Manager (Henry | Leung)               |

Digital Dust Indicator



30-Nov-24

Date of Calibration

#### **Certificate of Calibration**

Description:

| Manufacturer:                                                                                                                                         | Sibata Scienti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ific Technology LTD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | v                                                                          | alidity of Calib                         | ration Record                     | 30-Jan-25            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------|-----------------------------------|----------------------|
| Model No.:                                                                                                                                            | LD-5R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            |                                          |                                   |                      |
| Serial No.:                                                                                                                                           | 972778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            |                                          |                                   |                      |
| Equipment No.:                                                                                                                                        | SA-01-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sensitivity                                                                | 0.001 mg/m3                              | _                                 |                      |
| High Volume Sa                                                                                                                                        | impler No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A-01-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Before Sensitivity                                                         | y Adjustment                             | 735 CPM                           |                      |
| Tisch Calibratio                                                                                                                                      | n Orifice No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | After Sensitivity                                                          | Adjustment                               | 735 CPM                           |                      |
|                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | alibration of 1 hr T                                                       | ΓSP                                      |                                   |                      |
| Calibration Laser Dust Monitor                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                            | HVS                                      |                                   |                      |
| Point                                                                                                                                                 | Mass Concentration (μg/m3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            | Mas                                      | ss concentration (µ               | ıg/m³)               |
|                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X-axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                                          | Y-axis                            |                      |
| 1                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |                                          | 140.0                             |                      |
| 2                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |                                          | 121.0                             |                      |
| 3                                                                                                                                                     | 56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            | 101.0                                    |                                   |                      |
| Average                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |                                          | 120.7                             |                      |
| By Linear Regression of Y on X  Slope , mw = 1.9500 Intercept, bw = -8.0333  Correlation coefficient* = 0.9999                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            |                                          |                                   |                      |
| Correlation Co                                                                                                                                        | oefficient* =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                                          |                                   |                      |
| Correlation Co                                                                                                                                        | oefficient* = _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | et Correlation Fac                                                         | tor                                      |                                   |                      |
|                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | et Correlation Fac                                                         | tor                                      | 120.7                             |                      |
| Particaulate Con                                                                                                                                      | centration by I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | et Correlation Fac                                                         | tor                                      | 120.7<br>66.0                     |                      |
| Particaulate Con                                                                                                                                      | ecentration by I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | So<br>High Volume Sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | et Correlation Fac                                                         | tor                                      |                                   |                      |
| Particaulate Con<br>Particaulate Con<br>Measureing time<br>Set Correlation I                                                                          | acentration by I<br>acentration by I<br>e, (min)<br>Factor, SCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>S</b> e<br>High Volume Sampler<br>Dust Meter (μg/m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | et Correlation Fac<br>(μg/m³)                                              | tor                                      | 66.0                              |                      |
| Particaulate Con<br>Particaulate Con<br>Measureing time<br>Set Correlation I                                                                          | acentration by I<br>acentration by I<br>e, (min)<br>Factor, SCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | So<br>High Volume Sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | et Correlation Fac<br>(μg/m³)                                              | tor<br>1.8                               | 66.0                              |                      |
| Particaulate Con Particaulate Con Measureing time Set Correlation I SCF = [K=Hig                                                                      | acentration by Incentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>S</b> e<br>High Volume Sampler<br>Dust Meter (μg/m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | et Correlation Fact<br>(μg/m³)                                             |                                          | 66.0                              |                      |
| Particaulate Con Particaulate Con Measureing time Set Correlation I SCF = [ K=Hig In-house method The Dust Monito                                     | icentration by I<br>icentration by I<br>e, (min)<br>Factor, SCF<br>h Volume San<br>I in according tor was compare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | So<br>High Volume Sampler<br>Dust Meter (μg/m³)<br>Inpler / Dust Meter, (μ<br>to the instruction manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | et Correlation Fact<br>(μg/m³)                                             | 1.8                                      | 66.0                              | rate the Correlation |
| Particaulate Con Particaulate Con Measureing time Set Correlation I SCF = [ K=Hig In-house method The Dust Monite Factor (CF) betw                    | centration by Incentration by Incentration by Incentration by Incentration by Incentration, SCF  The Volume Same In according to the Court of the Co | Solution High Volume Sampler  Dust Meter (μg/m³)  Impler / Dust Meter, (μ  To the instruction manual with a calibrated High Volume Sampler Volume Sampler High High Volume Sampler High High Volume Sampler High Volume Sampler High Volume Sampler H | et Correlation Fact (μg/m³)  ag/m3) ]  al: igh Volume Samples ume Sampler. | 1.8                                      | 66.0                              | rate the Correlation |
| Particaulate Con Particaulate Con Measureing time Set Correlation I SCF = [ K=Hig In-house method The Dust Monite Factor (CF) betw                    | centration by Incentration by Incentration by Incentration by Incentration by Incentration, SCF  The Volume Same In according to the Court of the Co | So<br>High Volume Sampler<br>Dust Meter (μg/m³)<br>Inpler / Dust Meter, (μ<br>to the instruction manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | et Correlation Fact (μg/m³)  ag/m3) ]  al: igh Volume Samples ume Sampler. | 1.8                                      | 66.0                              | rate the Correlation |
| Particaulate Con Particaulate Con Measureing time Set Correlation I SCF = [ K=Hig In-house method The Dust Monite Factor (CF) betw                    | centration by Incentration by Incentration by Incentration by Incentration by Incentration, SCF  The Volume Same In according to the Court of the Co | Solution High Volume Sampler  Dust Meter (μg/m³)  Impler / Dust Meter, (μ  To the instruction manual with a calibrated High Volume Sampler Volume Sampler High High Volume Sampler High High Volume Sampler High Volume Sampler High Volume Sampler H | et Correlation Fact (μg/m³)  ag/m3) ]  al: igh Volume Samples ume Sampler. | 1.8                                      | 66.0                              | rate the Correlation |
| Particaulate Con Particaulate Con Measureing time Set Correlation I SCF = [ K=Hig  In-house method The Dust Monito Factor (CF) betw Those filter page | centration by Incentration by Incentration by Incentration by Incentration by Incentration by Incentration (Incentration & Sandal Incentration & Sandal In | Solution High Volume Sampler  Dust Meter (μg/m³)  Impler / Dust Meter, (μ  To the instruction manual with a calibrated High Volume Sampler Volume Sampler High High Volume Sampler High High Volume Sampler High Volume Sampler High Volume Sampler H | et Correlation Fact (μg/m³)  ag/m3) ]  al: igh Volume Samples ume Sampler. | 1.8 r and The result timed)              | 66.0<br>60.0<br>was used to gener | rate the Correlation |
| Particaulate Con Particaulate Con Measureing time Set Correlation I SCF = [ K=Hig  In-house method The Dust Monite Factor (CF) betw Those filter pap  | recentration by Incentration by Incentration by Incentration by Incentration by Incentration, SCF in Volume Same In according to the Core was compared ween the Dust Incers are weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Solution High Volume Sampler  Dust Meter (μg/m³)  Impler / Dust Meter, (μ  To the instruction manual with a calibrated High Volume Sampler Volume Sampler High High Volume Sampler High High Volume Sampler High Volume Sampler High Volume Sampler H | et Correlation Fact (μg/m³)  ag/m3) ]  al: igh Volume Samples ume Sampler. | 1.8 r and The result timed) Approved by: | 66.0<br>60.0<br>was used to gener | y Over               |

Digital Dust Indicator



Date of Calibration 30-Nov-24

#### **Certificate of Calibration**

Description:

| Manufacturer:                                                                           | Sibata Scient                         | ific Technology LTD.                                                    | _                | Validity of Calibr | ation Record      | 30-Jan-25            |
|-----------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------|------------------|--------------------|-------------------|----------------------|
| Model No.:                                                                              | LD-5R                                 |                                                                         |                  |                    |                   |                      |
| Serial No.:                                                                             | 972780                                |                                                                         |                  |                    |                   |                      |
| Equipment No.:                                                                          | SA-01-09                              |                                                                         | Sensitivity      | 0.001 mg/m3        |                   |                      |
| High Volume Sa                                                                          | mpler No.:                            | A-01-03                                                                 | Before Sensitiv  | vity Adjustment    | 739 CPM           |                      |
| Tisch Calibration                                                                       | n Orifice No.:                        | 3864                                                                    | After Sensitivi  | ty Adjustment      | 739 CPM           |                      |
|                                                                                         |                                       | Cal                                                                     | libration of 1 h | r TSP              |                   |                      |
| Calibration Laser Dust Monitor                                                          |                                       | •                                                                       |                  | HVS                |                   |                      |
| Point                                                                                   | N.                                    | Iass Concentration (μg/1                                                | m3)              | Mas                | s concentration ( | $\mu g/m^3$ )        |
| 1                                                                                       |                                       | X-axis                                                                  |                  |                    | Y-axis            |                      |
| 2                                                                                       |                                       | 74.0                                                                    |                  |                    | 138.0<br>118.0    |                      |
| 3                                                                                       | 64.0<br>54.0                          |                                                                         |                  | 100.0              |                   |                      |
| Average                                                                                 |                                       | 64.0                                                                    |                  | 118.7              |                   |                      |
| Slope , mw = Correlation co                                                             | 1.90<br>pefficient* =                 | 0.9995                                                                  |                  | ept, bw =          | -2.9333           | 3                    |
|                                                                                         |                                       | Set                                                                     | t Correlation F  | actor              |                   |                      |
| Particaulate Con                                                                        | centration by l                       | High Volume Sampler (                                                   | $(\mu g/m^3)$    | 118.7              |                   |                      |
| Particaulate Con                                                                        | centration by l                       | Oust Meter (μg/m <sup>3</sup> )                                         |                  | 64.0               |                   |                      |
| Measureing time                                                                         | · · · · · · · · · · · · · · · · · · · |                                                                         |                  |                    | 60.0              |                      |
| Set Correlation Factor , SCF  SCF = [ K=High Volume Sampler / Dust Meter, (µg/m3) ] 1.9 |                                       |                                                                         |                  |                    |                   |                      |
| In-house method                                                                         | in according t                        | to the instruction manua                                                | ո1։              |                    |                   |                      |
| Factor (CF) betw                                                                        | een the Dust I                        | ed with a calibrated Hig<br>Monitor and High Volu<br>ted by HOKLAS labo | me Sampler.      |                    | was used to gene  | rate the Correlation |
| Calibrated by:                                                                          |                                       | M.                                                                      | _                | Approved by:       | -lem              | y day                |
| Technica                                                                                | al Officer (Wo                        | ng Shing Kwai)                                                          |                  |                    | et Manager (Henr  | 1                    |

Digital Dust Indicator



30-Nov-24

Date of Calibration

#### **Certificate of Calibration**

Description:

| -                                                                                                                                                                                                                                                                                                                   |                            |                                 |                    |                   |                     |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------|--------------------|-------------------|---------------------|-------------|
| Manufacturer:                                                                                                                                                                                                                                                                                                       | Sibata Scient              | ific Technology LTD.            | _                  | Validity of Calib | ration Record       | 30-Jan-25   |
| Model No.:                                                                                                                                                                                                                                                                                                          | LD-5R                      |                                 |                    |                   |                     |             |
| Serial No.:                                                                                                                                                                                                                                                                                                         | 972781                     |                                 |                    |                   |                     |             |
| Equipment No.:                                                                                                                                                                                                                                                                                                      | SA-01-10                   |                                 | Sensitivity        | 0.001 mg/m3       | _                   |             |
| High Volume Sa                                                                                                                                                                                                                                                                                                      | mpler No.:                 | A-01-03                         | Before Sensitiv    | ity Adjustment    | 734 CPM             |             |
| Tisch Calibration                                                                                                                                                                                                                                                                                                   | n Orifice No.:             | 3864                            | After Sensitivit   | y Adjustment      | 734 CPM             |             |
|                                                                                                                                                                                                                                                                                                                     |                            | Ca                              | llibration of 1 hr | TSP               |                     |             |
| Calibration Laser Dust Monitor                                                                                                                                                                                                                                                                                      |                            | r                               |                    | HVS               |                     |             |
| Point                                                                                                                                                                                                                                                                                                               | Mass Concentration (μg/m3) |                                 |                    | Mas               | ss concentration (µ | $\lg/m^3$ ) |
|                                                                                                                                                                                                                                                                                                                     |                            | X-axis                          |                    | Y-axis            |                     |             |
| 1                                                                                                                                                                                                                                                                                                                   |                            | 78.0                            |                    |                   | 134.0               |             |
| 2                                                                                                                                                                                                                                                                                                                   |                            | 68.0                            |                    |                   | 115.0               |             |
| 3                                                                                                                                                                                                                                                                                                                   | 60.0                       |                                 |                    | 101.0             |                     |             |
| Average                                                                                                                                                                                                                                                                                                             |                            | 68.7                            |                    |                   | 116.7               |             |
| Slope , mw =<br>Correlation co                                                                                                                                                                                                                                                                                      | 1.83<br>pefficient* =      | 61<br>0.9997                    |                    | ept, bw =         | -9.4098             |             |
|                                                                                                                                                                                                                                                                                                                     |                            | Se                              | et Correlation Fa  | nctor             |                     |             |
| Particaulate Con                                                                                                                                                                                                                                                                                                    | centration by l            | High Volume Sampler             | $(\mu g/m^3)$      | 116.7             |                     |             |
| Particaulate Con                                                                                                                                                                                                                                                                                                    | centration by I            | Dust Meter (μg/m <sup>3</sup> ) |                    | 68.7              |                     |             |
| Measureing time                                                                                                                                                                                                                                                                                                     | e, (min)                   |                                 |                    | 60.0              |                     |             |
| Set Correlation Factor , SCF  SCF = [ K=High Volume Sampler / Dust Meter, (µg/m3) ] 1.7                                                                                                                                                                                                                             |                            |                                 |                    |                   |                     |             |
| In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.  Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed) |                            |                                 |                    |                   |                     |             |
| Calibrated by:                                                                                                                                                                                                                                                                                                      |                            | ong Shing Kwai)                 | _                  | Approved by:      | Ct Manager (Henry   | Leung)      |

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Report No. : 00736 Issue Date : 28 Jun 2024

Application No. : HP00592

**Certificate of Calibration** 

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Sound Level Calibrator.

Equipment No.: : N-16-01

Manufacturer: : Hangzhou Aihua Instruments Co., Ltd.

Other information : Model No. AWA6021A

Serial No. 1023253

Date Received : 27 Jun 2024

Test Period : 28 Jun 2024 to 28 Jun 2024

Test Requested : Performance checking for Sound Level Calibrator

Test Method : The Sound Level Meter and Calibrator has been calibrated in accordance with

the documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Report No. : 00736 | Issue Date : 28 Jun 2024

Application No. : HP00592

## **Certificate of Calibration**

Measuring equipment

| Description   | Sound Calibrator |
|---------------|------------------|
| Manufacturer  | Brüel & Kjær     |
| Model No.     | TYPE 4231        |
| Serial No.    | 2326353          |
| Equipment No. | N-02-01          |

| Description    | Sound Meter     |
|----------------|-----------------|
| Manufacturer   | BSWA Technology |
| Model No.      | BSWA 308        |
| Serial No.     | 570183          |
| Microphone No. | 570605          |
| Equipment No.  | N-12-01         |

Test Result

| Reference value, dB | Indication value, dB | Deviation, dB | Allowed deviation, dB |
|---------------------|----------------------|---------------|-----------------------|
| 94.0                | 94.1                 | + 0.1         | ± 0.3                 |
| 114.0               | 114.1                | + 0.1         | ± 0.5                 |

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
  - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Report No. : 00582 | Issue Date : 14 Feb 2024

Application No. : HP00451

**Certificate of Calibration** 

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Sound Level Calibrator.

Equipment No.: : N-16-02

Manufacturer: : Hangzhou Aihua Instruments Co., Ltd.

Other information : Model No. AWA6021A

Serial No. 1023064

Date Received : 14 Feb 2024

Test Period : 15 Feb 2024 to 15 Feb 2024

Test Requested : Performance checking for Sound Level Calibrator

Test Method : The Sound Level Meter and Calibrator has been calibrated in accordance with

the documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Application No. : HP00451

## **Certificate of Calibration**

Measuring equipment

| Description   | Sound Calibrator |
|---------------|------------------|
| Manufacturer  | Brüel & Kjær     |
| Model No.     | TYPE 4231        |
| Serial No.    | 2326353          |
| Equipment No. | N-02-01          |

| Description    | Sound Meter |
|----------------|-------------|
| Manufacturer   | SVANTEK     |
| Model No.      | SVAN 977    |
| Serial No.     | 92677       |
| Microphone No. | 10352       |
| Equipment No.  | N-14-01     |

Test Result

•

| Reference value, dB | Indication value, dB | Deviation, dB | Allowed deviation, dB |
|---------------------|----------------------|---------------|-----------------------|
| 94.0                | 94.2                 | + 0.2         | ± 0.3                 |
| 114.0               | 114.2                | + 0.2         | ± 0.5                 |

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
  - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Report No. : 00583 | Issue Date : 16 Feb 2024

Application No. : HP00452

**Certificate of Calibration** 

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-08-07

Manufacturer: : SVANTEK

Other information : Model No.

| Model No.      | SVAN 957 |
|----------------|----------|
| Serial No.     | 21455    |
| Microphone No. | 17204    |

Date Received : 14 Feb 2024

Test Period : 15 Feb 2024 to 15 Feb 2024

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Report No. : 00583 | Issue Date : 16 Feb 2024

Application No. : HP00452

### **Certificate of Calibration**

Measuring equipment

| Description   | Sound Calibrator |
|---------------|------------------|
| Manufacturer  | Brüel & Kjær     |
| Model No.     | TYPE 4231        |
| Serial No.    | 2326353          |
| Equipment No. | N-02-01          |

Test Result

| Reference value, dB | Indication value, dB | Deviation, dB | Allowed deviation, dB |
|---------------------|----------------------|---------------|-----------------------|
| 94.0                | 94.1                 | + 0.1         | ± 1.5                 |
| 114.0               | 114.1                | + 0.1         | ± 1.5                 |

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
  - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Application No. : HP00514

**Certificate of Calibration** 

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-12-01

Manufacturer: : BSWA Technology

Other information :

| Model No.      | BSWA 308 |
|----------------|----------|
| Serial No.     | 570183   |
| Microphone No. | 590073   |

Date Received : 09 Apr 2024

Test Period : 09 Apr 2024 to 09 Apr 2024

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Report No. : 00647 Issue Date : 11 Apr 2024

Application No. : HP00514

### **Certificate of Calibration**

Measuring equipment

| Description   | Sound Calibrator |
|---------------|------------------|
| Manufacturer  | Brüel & Kjær     |
| Model No.     | TYPE 4231        |
| Serial No.    | 2326353          |
| Equipment No. | N-02-01          |

Test Result

| Reference value, dB | Indication value, dB | Deviation, dB | Allowed deviation, dB |
|---------------------|----------------------|---------------|-----------------------|
| 94.0                | 94.1                 | + 0.1         | ± 1.5                 |
| 114.0               | 114.2                | + 0.2         | ± 1.5                 |

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
  - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Report No. : 00648 | Issue Date : 11 Apr 2024

Application No. : HP00515

**Certificate of Calibration** 

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-12-05

Manufacturer: : BSWA Technology

Other information :

| Model No.      | BSWA 308 |
|----------------|----------|
| Serial No.     | 580287   |
| Microphone No. | 570610   |

Date Received : 09 Apr 2024

Test Period : 09 Apr 2024 to 09 Apr 2024

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Report No. : 00648 | Issue Date : 11 Apr 2024

Application No. : HP00515

## **Certificate of Calibration**

Measuring equipment

| Description   | Sound Calibrator |  |
|---------------|------------------|--|
| Manufacturer  | Brüel & Kjær     |  |
| Model No.     | TYPE 4231        |  |
| Serial No.    | 2326353          |  |
| Equipment No. | N-02-01          |  |

Test Result :

| Reference value, dB | Indication value, dB | Deviation, dB | Allowed deviation, dB |
|---------------------|----------------------|---------------|-----------------------|
| 94.0                | 94.1                 | + 0.1         | ± 1.5                 |
| 114.0               | 114.1                | + 0.1         | ± 1.5                 |

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
  - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Report No. : 00618 Issue Date : 18 Mar 2024

Application No. : HP00473

**Certificate of Calibration** 

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-12-06

Manufacturer: : BSWA Technology

Other information :

| Model No.      | BSWA 308 |
|----------------|----------|
| Serial No.     | 580156   |
| Microphone No. | 580804   |

Date Received : 06 Mar 2024

Test Period : 14 Mar 2024 to 14 Mar 2024

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

:



Report No. : 00618 | Issue Date : 18 Mar 2024

Application No. : HP00473

## **Certificate of Calibration**

Measuring equipment

| Description   | Sound Calibrator |  |
|---------------|------------------|--|
| Manufacturer  | Brüel & Kjær     |  |
| Model No.     | TYPE 4231        |  |
| Serial No.    | 2326353          |  |
| Equipment No. | N-02-01          |  |

Test Result

| Reference value, dB | Indication value, dB | Deviation, dB | Allowed deviation, dB |
|---------------------|----------------------|---------------|-----------------------|
| 94.0                | 94.0                 | ± 0.0         | ± 1.5                 |
| 114.0               | 114.1                | + 0.1         | ± 1.5                 |

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
  - 2. The indication value was obtained from the average of ten replicated measurement.