

Certificate of Calibration - Wind Monitoring Station

Description:	Yau Lai Estate, Bik Lai House
Manufacturer:	Davis Instruments
Model No.:	<u>Davis7440</u>
Serial No.:	<u>MC01010A44</u>
Equipment No.:	<u>SA-03-04</u>
Date of Calibration	<u>17-Aug-2024</u>
Next Due Date	<u>17-Feb-2025</u>

1. Performance check of Wind Speed

Wind Sp	beed, m/s	Difference D (m/s)
Wind Speed Reading (V1)	Anemometer Value (V2)	D = V1 - V2
0.0	0.0	0.0
1.5	1.6	-0.1
2.5	2.3	0.2
4.0	4.0	0.0

2. Performance check of Wind Direction

Wind Di	rection (°)	Difference D (°)
Wind Direction Reading (W1)	Marine Compass Value (W2)	$\mathbf{D} = \mathbf{W1} - \mathbf{W2}$
0	0	0.0
90	90	0.0
180	180	0.0
270	270	0.0

Test Specification:

1. Performance Wind Speed Test - The wind meter was on-site calibrated against the anemometer

2. Performance Wind Direction Test - The wind meter was on-site calibrated against the marine compass at four direction

15 viro	n m	ent	al	J			Di Janua	ALIBRATION UE DATE: ary 15, 2025
	Ge	rtifa	cate				tion	
			Calibration	Certificatio	on Informat	ion		
Cal. Date: Ja	nuary 15,	2024	Rootsr	neter S/N:	438320	Ta:	294	°К
Operator: Ji	m Tisch					Pa:	755.4	mm Hg
Calibration Mo	ndel #•	TE-5025A	Calib	prator S/N:	3864			0
	Juci III	12 30234	Cuin		0004			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔH	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4380	3.3	2.00	
	2	3	4	1	1.0270	6.4	4.00	
	3	5	6	1	0.9180	8.0	5.00	
	4	7	8	1	0.8750	8.9	5.50	
	5	9	10	1	0.7230	12.9	8.00	
			D	Data Tabula	tion			
	Vetd	Octd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$			0-	$\sqrt{\Delta H(Ta/Pa)}$	
	Vstd	Qstd					/	
	(m3) 1.0031	(x-axis) 0.6975	(y-axi 1.419		Va 0.9956	(x-axis) 0.6924	(y-axis) 0.8823	
-	0.9989	0.9727	2.007		0.9915	0.9655	1.2477	
- F	0.9968	1.0858	2.244		0.9894	1.0778	1.3950	
F	0.9956	1.1378	2.353		0.9882	1.1294	1.4631	
	0.9903	1.3697	2.839	90	0.9829	1.3595	1.7645	
		m=	2.111	.96		m=	1.32248	
	QSTD	b=	-0.050		QA	b=	-0.03134	
		r=	0.999	98		r=	0.99998	
				Calculatio	าร			
	Vstd=	ΔVol((Pa-ΔP)	/Pstd)(Tstd/Ta			ΔVol((Pa-ΔF	P)/Pa)	
		Vstd/∆Time				Va/∆Time		
			For subsequ	ent flow rat	te calculation	ns:		
	Qstd=	1/m ((__H(Pa <u>Tstd</u> Pstd Ta))-b)	Qa=	1/m ((√ΔH	(Ta/Pa))-b)	
		Conditions						
Tstd:	298.15			[RECAI	IBRATION	
Pstd:		mm Hg				mmondo		n non 1000
		ey er reading (i	n H2O)				nual recalibratio	· /
ΔH: calibrator ΔP: rootsmeter							egulations Part 5 Reference Meth	
Ta: actual abso							ended Particulate	1
Pa: actual baro							re, 9.2.17, page 3	
and the second se					UIR LIR	- Autospile	10, J.Z.I., haße :	
b: intercept m: slope				L				

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

File No. MA20003/18/029

Project No.	CKL 1 - Flat 1	21 Cha Kwo Lin	g Village				
Date:	4-N	lov-24	Next Due Date:	4-Jan-25	Operator:	SK	
Equipment No.:	A-01-18		Model No.:	TE 5170	Serial No.	o. <u>0723</u>	
			Ambient Condi	tion			
Temperatu	ire, Ta (K)	302	Pressure, Pa (mml	Hg)	762.7		

Orifice Transfer Standard Information							
Serial No. 3864 Slope, mc 0.05976 Intercept, bc -0.05018							
Last Calibration Date:	15-Jan-24	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date:	14-Jan-25	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc					

		Calibration o	f TSP Sampler		
Calibration		Orfice	1		HVS
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2} $ Y- axis
1	13.5	3.66	62.02	9.1	3.00
2	10.1	3.16	53.76	7.0	2.63
3	8.4	2.88	49.10	5.2	2.27
4	6.1	2.46	41.97	3.5	1.86
5	3.5	1.86	31.99	1.7	1.30
Slope , mw = Correlation	ession of Y on X 0.0579 coefficient* =		Intercept, bw = _	-0.554	13
			Calculation		
From the TSP Fi	eld Calibration C	urve, take Qstd = 43 CFM			
From the Regres	sion Equation, the	e "Y" value according to			
Therefore, Se	et Point; W = (my	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}]$ w x Qstd + bw) ² x (760 / Pa) x (·
Remarks:					
Conducted by:	Wong Shi	ng Kwai Signature	<u>k</u>	<u></u> .	Date: 4-Nov-24
Checked by:	Henry I	Leung Signature	:lem	y Xozy	Date: 4-Nov-24

File No. MA20003/55/029

Project No.	CKL 2 - Flat 10	03 Cha Kwo Li	ng Village				
Date:	4-N	lov-24	Next Due Date:	4-Jan-25	Operator:	SK	
Equipment No.: A-01-:		01-55	Model No.:	TE 5170	Serial No.	1956	
			Ambient Condit	ion			
Tamparatu	ure, Ta (K)	302	Pressure, Pa (mml	Hø)	762.7		

Orifice Transfer Standard Information								
Serial No.	3864 Slope, mc 0.05976 Intercept, bc -0.05018							
Last Calibration Date:	15-Jan-24	1	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date:	14-Jan-25	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc						

Calibration of TSP Sampler										
Calibration		Orfice		HVS						
Point	ΔH (orifice), in. of water	$[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water		0) x (298/Ta)] ^{1/2} •axis				
1	13.5	3.66	62.02	9.3	3	3.03				
2	11.3	3.35	56.82	7.3	2	2.69				
3	9.2	3.02	51.35	5.9	2	2.42				
4	5.5	2.33	39.89	2.8	1	.67				
5	3.5	1.86	31.99	1.9	1	.37				
By Linear Regression of Y on X Slope , mw =0.0566 Intercept, bw :0.5013 Correlation coefficient* =0.9966 *If Correlation Coefficient < 0.990, check and recalibrate.										
From the Regres	Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W x (Pa/760) x (298/Ta)]^{1/2}$									
	Therefore, Set Point; $W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = 3.76$									
Remarks: Conducted by:	Wong Shi	ng Kwai Signature:	X	Ŋ.	Date:	4-Nov-24				
Checked by:	Henry I	Leung Signature:	-lem	<u>1 X27</u>	Date:	4-Nov-24				

CIN@TECH 4

File No. MA20003/04/0027

Project No.	KER 1 - Future					
Date:	<u> </u>	Nov-24	Next Due Date:	11-Jan-25	Operator:	SK
Equipment No.:	No.: A-01-04		Model No.:	TE 5170	Serial No.	10595
			Ambient Condit	ion		
Temperatu	ure, Ta (K)	297.9	Pressure, Pa (mmH	Hg)	760.8	

Orifice Transfer Standard Information							
Serial No.	3864	Slope, mc 0.05976 Intercept, bc -0.05018					
Last Calibration Date:	15-Jan-24	1	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$				
Next Calibration Date:	14-Jan-25	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc					

Calibration of TSP Sampler								
Calibration		Orfice		HVS				
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water		0) x (298/Ta)] ^{1/2} -axis		
1	13.2	3.64	61.68	8.7	2	2.95		
2	10.8	3.29	55.87	7.1		2.67		
3	8.8	2.97	50.51	5.1		2.26		
4	5.5	2.35	40.11	3.2	1	.79		
5	3.9	1.98	33.91	2.1	1	.45		
Slope , mw = Correlation	coefficient < 0.990	0.9973	Intercept, bw	-0.393	95			
	*If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation							
From the TSP Fi	eld Calibration C	urve, take Qstd = 43 CFM						
From the Regression Equation, the "Y" value according to $\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = \left[\Delta W \mathbf{x} \left(\mathbf{Pa}/760\right) \mathbf{x} \left(298/\mathbf{Ta}\right)\right]^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) =								
Remarks:								
Conducted by:	Wong Shi	ng Kwai Signature		<u>у</u>	Date:	11-Nov-24		
Checked by:	Henry I	Leung Signature	: Llen	~ Xon	Date:	11-Nov-24		

File No. MA20003/44/0026

Project No.	KTD1 - Centre					
Date:	<u> </u>	Nov-24	Next Due Date:	11-Jan-25	Operator:	SK
Equipment No.:	uipment No.: A-01		4 Model No.: TE-5170		Serial No.	1316
			Ambient Conditi	ion		
Temperature, Ta (K) 297.9		Pressure, Pa (mmF	-Ig)	760.8		

Orifice Transfer Standard Information						
Serial No. 3864 Slope, mc 0.05976 Intercept, bc -0.05018						
Last Calibration Date:	15-Jan-24	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$] ^{1/2}	
Next Calibration Date:	14-Jan-25	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc				

Calibration of TSP Sampler								
Calibration		Orfice		HVS				
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/760) x (298/Ta)] Y-axis	1/2		
1	13.8	3.72	63.05	9.5	3.08			
2	11.2	3.35	56.88	7.5	2.74			
3	9.1	3.02	51.35	5.6	2.37			
4	6.4	2.53	43.20	3.7	1.92			
5	3.7	1.92	33.05	2.0	1.42			
Slope, mw =	ession of Y on X 0.0560		Intercept, bw	-0.468	1			
	coefficient* =	0.9988	_					
*If Correlation C	Coefficient < 0.990), check and recalibrate.						
			Calculation					
		urve, take Qstd = 43 CFM						
From the Regres	sion Equation, the	e "Y" value according to						
	mw x Qstd + bw = $[\Delta W x (Pa/760) x (298/Ta)]^{1/2}$							
Therefore, Se	et Point; $W = (mv)$	$(x + bw)^2 x (760 / Pa) x ($	(Ta / 298) =	3.77				
Remarks:								
Conducted by:	Wong Shi	ng Kwai Signature	»X	火.	Date: 11-Nov-24			
Checked by:	Henry I	Leung Signature	: \-lem	, ang	Date: 11-Nov-24			

File No. MA20003/41/0026

Project No.	ct No. KTD 2D - Next to the SOR Office of Trunk Road T2 in Kai Tak Area							
Date: 11-Nov-24		Next Due Date:	11-	Jan-25	Operator:	SK		
Equipment No.: A-0		01-41	Model No.: TE 5170		Serial No.	5280		
			Ambient C	ondition				
Temperature, Ta (K) 297.			Pressure, Pa (mmHg) 760.8					
Orifice Transfer Standard Information								
						0.05018		

L								
	Serial No.	3864 Slope, mc 0.05976 Intercept, bc		-0.05018				
	Last Calibration Date:	15-Jan-24	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
	Next Calibration Date:	14-Jan-25	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc					

Calibration of TSP Sampler									
Calibration		Orfice		HVS					
Point	ΔH (orifice), in. of water	$[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis				
1	14.3	3.78	64.16	9.6	3.10				
2	11.5	3.39	57.63	8.1	2.85				
3	9.7	3.12	52.99	6.1	2.47				
4	7.1	2.67	45.46	4.3	2.08				
5	4.0	2.00	34.33	2.0	1.42				
Slope , mw = Correlation	By Linear Regression of Y on X Slope , mw =0.0577 Intercept, bw :0.5536 Correlation coefficient* =0.9973 *If Correlation Coefficient < 0.990, check and recalibrate.								
		Set Point C	alculation						
		urve, take Qstd = 43 CFM "Y" value according to mw x Ostd + bw = [ΔW]	x (Pa/760) x (24	98/Ta)] ^{1/2}					
Therefore, Set Point; $W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = 3.70$									
Remarks:									
Conducted by:	Wong Shi		: <u>k</u>	N. Ang	Date: 11-Nov-24				
Checked by:	Henry I	Leung Signature	: \-len	- May	Date: 11-Nov-24				