

Certificate of Calibration - Wind Monitoring Station

Description:	Yau Lai Estate, Bik Lai House
Manufacturer:	Davis Instruments
Model No.:	<u>Davis7440</u>
Serial No.:	<u>MC01010A44</u>
Equipment No.:	<u>SA-03-04</u>
Date of Calibration	<u>17-Aug-2024</u>
Next Due Date	<u>17-Feb-2025</u>

1. Performance check of Wind Speed

Wind Sp	beed, m/s	Difference D (m/s)
Wind Speed Reading (V1) Anemometer Value (V2)		D = V1 - V2
0.0	0.0	0.0
1.5	1.6	-0.1
2.5	2.3	0.2
4.0	4.0	0.0

2. Performance check of Wind Direction

Wind Di	rection (°)	Difference D (°)
Wind Direction Reading (W1)	Marine Compass Value (W2)	$\mathbf{D} = \mathbf{W1} - \mathbf{W2}$
0	0	0.0
90	90	0.0
180	180	0.0
270	270	0.0

Test Specification:

1. Performance Wind Speed Test - The wind meter was on-site calibrated against the anemometer

2. Performance Wind Direction Test - The wind meter was on-site calibrated against the marine compass at four direction

15 viro	n m	ent	al	J	\sim		Di Janua	ALIBRATION UE DATE: ary 15, 2025
	Ge	rtifa	cate				tion	
			Calibration	Certificatio	on Informat	ion		
Cal. Date: Ja	nuary 15,	2024	Rootsr	neter S/N:	438320	Ta:	294	°К
Operator: Ji	m Tisch					Pa:	755.4	mm Hg
Calibration Mo	ndel #•	TE-5025A	Calib	prator S/N:	3864			0
	Juci III	12 30234	Cuin		0004			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔH	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4380	3.3	2.00	
	2	3	4	1	1.0270	6.4	4.00	
	3	5	6	1	0.9180	8.0	5.00	
	4	7	8	1	0.8750	8.9	5.50	
	5	9	10	1	0.7230	12.9	8.00	
			D	Data Tabula	tion			
	Vetd	Octd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$			0-	$\sqrt{\Delta H(Ta/Pa)}$	
	Vstd	Qstd					/	
	(m3) 1.0031	(x-axis) 0.6975	(y-axi 1.419		Va 0.9956	(x-axis) 0.6924	(y-axis) 0.8823	
-	0.9989	0.9727	2.007		0.9915	0.9655	1.2477	
- F	0.9968	1.0858	2.244		0.9894	1.0778	1.3950	
F	0.9956	1.1378	2.353		0.9882	1.1294	1.4631	
	0.9903	1.3697	2.839	90	0.9829	1.3595	1.7645	
		m=	2.111	.96		m=	1.32248	
	QSTD	b=	-0.050		QA	b=	-0.03134	
		r=	0.999	98		r=	0.99998	
				Calculatio	าร			
	Vstd=	ΔVol((Pa-ΔP)	/Pstd)(Tstd/Ta			ΔVol((Pa-ΔF	P)/Pa)	
		Vstd/∆Time				Va/∆Time		
			For subsequ	ent flow rat	te calculation	ns:		
	Qstd=	1/m ((__H(Pa <u>Tstd</u> Pstd Ta))-b)	Qa=	1/m ((√ΔH	(Ta/Pa))-b)	
		Conditions						
Tstd:	298.15			[RECA	IBRATION	
Pstd:		mm Hg				mmondo		n non 1000
		ey er reading (i	n H2O)				nual recalibratio	· /
ΔH: calibrator ΔP: rootsmeter							egulations Part 5 Reference Meth	
Ta: actual abso							ended Particulate	1
Pa: actual baro							re, 9.2.17, page 3	
and the second se					UIR LIR	- Autospile	, c, J.z.r, page :	
b: intercept m: slope				L				

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

File No. MA20003/18/028

Project No.	CKL 1 - Flat 1	21 Cha Kwo Ling	g Village				
Date:	4-S	Sep-24	Next Due Date:	4-Nov-24	Operator:	SK	
Equipment No.:	nt No.: A-01-18		Model No.:	TE 5170	5170 Serial No.		
			Ambient Condi	ition			
Temperatu	ıre, Ta (K)	302.7	Pressure, Pa (mml	Hg)	751.8		

Orifice Transfer Standard Information							
Serial No.	3864	Slope, mc	0.05976	Intercept, bc	-0.05018		
Last Calibration Date:	15-Jan-24		mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$				
Next Calibration Date:	14-Jan-25	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc					

		Calibration of	f TSP Sampler		
Calibration		Orfice			HVS
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2} $ Y- axis
1	13.7	3.65	61.96	9.3	3.01
2	10.3	3.17	53.84	7.2	2.65
3	8.6	2.89	49.27	5.4	2.29
4	6.3	2.48	42.29	3.5	1.85
5	3.7	1.90	32.60	1.9	1.36
Slope , mw =	ession of Y on X 0.0579 coefficient* =		Intercept, bw	-0.549	01
*If Correlation C	Coefficient < 0.99	0, check and recalibrate.			
			Calculation		
		urve, take Qstd = 43 CFM			
From the Regres	sion Equation, the	e "Y" value according to			
Therefore, Se	et Point; W = (my	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}]$ w x Qstd + bw) ² x (760 / Pa) x (
Remarks:					
Conducted by:	Wong Shi	ng Kwai Signature	k	火.	Date: 4-Sep-24
Checked by:	Henry	Leung Signature	-lem	<u>γ</u> ανογ	Date: 4-Sep-24

File No. MA20003/18/029

Project No.	CKL 1 - Flat 1	21 Cha Kwo Lin	g Village				
Date:	4-N	lov-24	Next Due Date:	4-Jan-25	Operator:	SK	
Equipment No.:	.: A-01-18		Model No.:	TE 5170	TE 5170 Serial No.		
			Ambient Condi	tion			
Temperatu	ire, Ta (K)	302	Pressure, Pa (mml	Hg)	762.7		

Orifice Transfer Standard Information							
Serial No.	3864	Slope, mc	0.05976	Intercept, bc	-0.05018		
Last Calibration Date:	15-Jan-24		mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$				
Next Calibration Date:	14-Jan-25	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc					

		Calibration of	f TSP Sampler		
Calibration		Orfice			HVS
Calibration Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2} $ Y- axis
1	13.5	3.66	62.02	9.1	3.00
2	10.1	3.16	53.76	7.0	2.63
3	8.4	2.88	49.10	5.2	2.27
4	6.1	2.46	41.97	3.5	1.86
5	3.5	1.86	31.99	1.7	1.30
Slope , mw = Correlation	coefficient < 0.99		Intercept, bw : -	-0.554	13
			Calculation		
From the TSP Fi	eld Calibration C	urve, take Qstd = 43 CFM			
From the Regres	sion Equation, the	e "Y" value according to			
Therefore, Se	et Point; W = (my	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}]$ v x Qstd + bw) ² x (760 / Pa) x (
Remarks:					
Conducted by:	Wong Shi	ng Kwai Signature	R	<u></u> Х.	Date: 4-Nov-24
Checked by:	Henry l	Leung Signature	-lem	J Xm J	Date: 4-Nov-24

File No. MA20003/55/028

Project No.	CKL 2 - Flat 10	03 Cha Kwo Lin	g Village			
Date:	4-S	ep-24	Next Due Date:	4-Nov-24	Operator:	SK
Equipment No.:	Equipment No.: A-01-55		Model No.:	TE 5170	Serial No.	1956
			Ambient Condit	ion		
Temperature, Ta (K) 302.7		Pressure, Pa (mmI	Hg)	751.8		

Orifice Transfer Standard Information							
Serial No.	3864	Slope, mc	0.05976	Intercept, bc	-0.05018		
Last Calibration Date:	15-Jan-24	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date:	14-Jan-25	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc					

Calibration of TSP Sampler								
Calibration		Orfice		HVS				
Point	ΔH (orifice), in. of water	$[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis			
1	13.6	3.64	61.74	9.4	3.03			
2	11.4	3.33	56.60	7.4	2.68			
3	9.3	3.01	51.20	6.0	2.42			
4	5.6	2.34	39.92	2.9	1.68			
5	3.6	1.87	32.17	2.0	1.40			
By Linear Regression of Y on X Slope , mw =0.0562Intercept, bw :0.4760 Correlation coefficient* =0.9965 *If Correlation Coefficient < 0.990, check and recalibrate.								
		Set Point C urve, take Qstd = 43 CFM e "Y" value according to		00 /m_)1/2				
Therefore, Se	et Point; W = (mv	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \mathbf{x}]$ $\mathbf{w} \mathbf{x} \mathbf{Qstd} + \mathbf{bw})^{2} \mathbf{x} (760 / Pa) $						
Remarks:	Remarks:							
Conducted by:	Wong Shi		X	<u>h</u> .	Date: 4-Sep-24			
Checked by:	Henry I	Leung Signature:	- lem	1 X27	Date: 4-Sep-24			

File No. MA20003/55/029

Project No.	CKL 2 - Flat 1	03 Cha Kwo Lii	ng Village			
Date:	4-N	Jov-24	Next Due Date:	4-Jan-25	Operator:	SK
Equipment No.:	A-	01-55	Model No.:	TE 5170	Serial No.	1956
			Ambient Conditi	on		
Temperatu	ıre, Ta (K)	302	Pressure, Pa (mmH	Ig)	762.7	

Orifice Transfer Standard Information									
Serial No.	Serial No. 3864 Slope, mc 0.05976 Intercept, bc -0.05018								
Last Calibration Date:	15-Jan-24	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$							
Next Calibration Date:	Next Calibration Date: 14-Jan-25 $Qstd = \{ [\Delta H x (Pa/760) x (298/Ta)]^{1/2} - bc \} / mc$								

Calibration of TSP Sampler								
Calibration		Orfice			HVS			
Point	ΔH (orifice), in. of water	$[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water		0) x (298/Ta)] ^{1/2} •axis		
1	13.5	3.66	62.02	9.3	3	3.03		
2	11.3	3.35	56.82	7.3	2	2.69		
3	9.2	3.02	51.35	5.9	2	2.42		
4	5.5	2.33	39.89	2.8	1	.67		
5	3.5	1.86	31.99	1.9	1	.37		
By Linear Regression of Y on X Slope , mw =0.0566 Intercept, bw :0.5013 Correlation coefficient* =0.9966 *If Correlation Coefficient < 0.990, check and recalibrate.								
From the Regres	Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W x (Pa/760) x (298/Ta)]^{1/2}$							
	et Point; W = (mv	$(x + bw)^2 x (760 / Pa) x ($	Ta / 298) =	3.76				
Remarks: Conducted by:	Wong Shi	ng Kwai Signature:	X	Ŋ.	Date:	4-Nov-24		
Checked by:	Henry I	Leung Signature:	-lem	<u>1 X27</u>	Date:	4-Nov-24		

CIN@TECH 4

File No. MA20003/04/0026

Project No.	KER 1 - Future	KER 1 - Future Residential Development at Kerry Godown					
Date:	11-5	Sep-24	Next Due Date:	12-Nov-24	Operator:	SK	
Equipment No.:	A-	01-04	Model No.:	TE 5170	Serial No.	10595	
			Ambient Condit	ion			
Temperatu	ire. Ta (K)	303.4	Pressure, Pa (mml	Hg)	756.1]

Orifice Transfer Standard Information							
Serial No. 3864 Slope, mc 0.05976 Intercept, bc -0.05018							
Last Calibration Date:	15-Jan-24	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date: 14-Jan-25 $Qstd = \{ [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2} - bc \} / mc$							

	Calibration of TSP Sampler								
Calibration		Orfice			HVS				
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis				
1	13.1	3.58	60.71	8.8	2.93				
2	10.7	3.23	54.95	7.0	2.62				
3	8.7	2.92	49.63	5.2	2.25				
4	5.6	2.34	39.98	3.3	1.80				
5	3.8	1.93	33.08	2.0	1.40				
Slope , mw =	ression of Y on X 0.0551 coefficient* =	0.9988	Intercept, bw	-0.428	34				
*If Correlation C	Coefficient < 0.990), check and recalibrate.	Soloulation						
Erom the TSD Fi	ald Calibration C	urve, take Qstd = 43 CFM							
		"Y" value according to							
	-	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}]$ w x Qstd + bw) ² x (760 / Pa) x (
Remarks:									
Conducted by:	Wong Shi	ng Kwai Signature	<u> </u>	<u>у</u>	Date: 11-Sep-24				
Checked by:	Henry I	_eungSignature	: \-len	, chay	Date: 11-Sep-24				

CIN@TECH 4

File No. MA20003/04/0027

Project No.	KER 1 - Future	Residential De	velopment at Kerry Godov	vn		
Date:	<u> </u>	Nov-24	Next Due Date:	11-Jan-25	Operator:	SK
Equipment No.:	A-0	01-04	Model No.:	TE 5170	Serial No.	10595
			Ambient Condit	ion		
Temperatu	ure, Ta (K)	297.9	Pressure, Pa (mmH	Hg)	760.8	

Orifice Transfer Standard Information							
Serial No. 3864 Slope, mc 0.05976 Intercept, bc -0.05018							
Last Calibration Date:	15-Jan-24	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date: 14-Jan-25 $Qstd = \{ [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2} - bc \} / mc \}$							

	Calibration of TSP Sampler								
Calibration		Orfice			HVS				
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water		0) x (298/Ta)] ^{1/2} -axis			
1	13.2	3.64	61.68	8.7	2	2.95			
2	10.8	3.29	55.87	7.1		2.67			
3	8.8	2.97	50.51	5.1		2.26			
4	5.5	2.35	40.11	3.2	1	.79			
5	3.9	1.98	33.91	2.1	1	.45			
Slope , mw = Correlation	coefficient < 0.990	0.9973), check and recalibrate.	Intercept, bw	-0.393	35				
		·	Calculation						
From the TSP Fi	eld Calibration C	urve, take Qstd = 43 CFM							
		e "Y" value according to							
	-	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}]$ v x Qstd + bw) ² x (760 / Pa) x (
Remarks:									
Conducted by:	Wong Shi	ng Kwai Signature		<u>у</u>	Date:	11-Nov-24			
Checked by:	Henry I	Leung Signature	: Llen	~ Xor	Date:	11-Nov-24			

File No. MA20003/44/0025

Project No.	KTD1 - Centre	of Excellence in	n Paediatrics (Children's H	ospital)			
Date:	11-5	Sep-24	Next Due Date:	11-Nov-24	Operator:	SK	
Equipment No.:	A-	01-44	Model No.:	TE-5170	Serial No.	1316	
			Ambient Conditi	on			
Temperatu	ıre. Ta (K)	303.4	Pressure, Pa (mmH	lg)	756.1		

Orifice Transfer Standard Information							
Serial No. 3864 Slope, mc 0.05976 Intercept, bc -0.05018							
Last Calibration Date:	15-Jan-24	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date: 14-Jan-25 $Qstd = \{[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2} - bc\} / mc$							

Calibration of TSP Sampler							
Calibration		Orfice			HVS		
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis		
1	13.9	3.69	62.51	9.6	3.06		
2	11.3	3.32	56.44	7.4	2.69		
3	9.2	3.00	51.01	5.5	2.32		
4	6.5	2.52	43.01	3.8	1.93		
5	3.8	1.93	33.08	2.1	1.43		
By Linear Regression of Y on X Slope , mw =0.0552 Intercept, bw :0.4294 Correlation coefficient* =0.9975 *If Correlation Coefficient < 0.990, check and recalibrate.							
		Set Point C	alculation				
From the TSP Fi	eld Calibration C	urve, take Qstd = 43 CFM					
From the Regres	sion Equation, the	e "Y" value according to					
$mw \ x \ Qstd + bw = [\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) =3.86							
Remarks:							
Conducted by:	Wong Shi	ng Kwai Signature:	<u>k</u>	<u>у</u>	Date: 11-Sep-24		

Signature:

-lem drag

Date: 11-Sep-24

Checked by: <u>Henry Le</u>ung

File No. MA20003/44/0026

Project No.	KTD1 - Centre					
Date:	<u> </u>	Nov-24	Next Due Date:	11-Jan-25	Operator:	SK
Equipment No.:	oment No.: A-01-44		Model No.:	TE-5170	Serial No.	1316
			Ambient Conditi	ion		
Temperatu	ıre, Ta (K)	297.9	Pressure, Pa (mmF	-Ig)	760.8	

Orifice Transfer Standard Information							
Serial No.	3864	Slope, mc 0.05976 Intercept, bc -0.05018					
Last Calibration Date:	15-Jan-24	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date:	14-Jan-25	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc					

Calibration of TSP Sampler								
Calibration			HVS					
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/760) x (298/Ta)] Y-axis	1/2		
1	13.8	3.72	63.05	9.5	3.08			
2	11.2	3.35	56.88	7.5	2.74			
3	9.1	3.02	51.35	5.6	2.37			
4	6.4	2.53	43.20	3.7	1.92			
5	3.7	1.92	33.05	2.0	1.42			
By Linear Regression of Y on X Slope , mw = <u>0.0560</u> Intercept, bw : <u>-0.4681</u>								
	coefficient* =	0.9988	_					
*If Correlation C	Coefficient < 0.990), check and recalibrate.						
			Calculation					
		urve, take Qstd = 43 CFM						
From the Regres	sion Equation, the	e "Y" value according to						
		$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}]$						
Therefore, Se	et Point; $W = (mv)$	$(x + bw)^2 x (760 / Pa) x ($	(Ta / 298) =	3.77				
Remarks:								
Conducted by:	Wong Shi	ng Kwai Signature	»X	火.	Date: 11-Nov-24			
Checked by:	Henry I	Leung Signature	: \-lem	, ang	Date: 11-Nov-24			

File No. MA20003/41/0025

Project No.	KTD 2D - Next to the SOR Office of Trunk Road T2 in Kai Tak Area						
Date:	11-	Sep-24	Next Due Date:	11-Nov-24	Operator:	SK	
Equipment No.:	o.: <u>A-01-41</u>		Model No.:	TE 5170	Serial No.	5280	
			Ambient Condit	ion			
Temperature, Ta (K) 303.4		Pressure, Pa (mmHg)		756.1			
Orifice Transfer Standard Information							

Orifice Transfer Standard Information							
Serial No.	3864	Slope, mc	0.05976	Intercept, bc	-0.05018		
Last Calibration Date:	15-Jan-24	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date:	14-Jan-25	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc					

Calibration of TSP Sampler								
Calibration		Orfice			HVS			
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis			
1	14.2	3.73	63.17	9.5	3.05			
2	11.4	3.34	56.69	8.2	2.83			
3	9.6	3.06	52.09	6.2	2.46			
4	7.0	2.62	44.60	4.4	2.07			
5	3.9	1.95	33.51	2.1	1.43			
By Linear Regression of Y on X Slope , mw =0.0558 Intercept, bw :0.4239 Correlation coefficient* =0.9964 *If Correlation Coefficient < 0.990, check and recalibrate.								
		Set Point C	alculation					
		urve, take Qstd = 43 CFM "Y" value according to						
$mw \ x \ Qstd + bw = [\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) =4.00								
Remarks:								
Conducted by:	Wong Shi		: <u> </u>	N- - Mog	Date: 11-Sep-24			
Checked by:	Henry I	Leung Signature	: \-len	- ang	Date: 11-Sep-24			

File No. MA20003/41/0026

Project No.	KTD 2D - Next to the SOR Office of Trunk Road T2 in Kai Tak Area							
Date:	11-Nov-24		Next Due Date: 11-Jan-25		Jan-25	Operator: SK		
Equipment No.:	: No.: A-01-41		Model No.: TE 5170		E 5170	Serial No.	5280	
			Ambient C	ondition				
Temperature, Ta (K)		297.9	Pressure, Pa	760.8				
Orifice Transfer Standard Information								
Cardal Ma			C1	0.05076	Tuta		0.05018	

L	Office Transfer Standard Information						
	Serial No.	3864	Slope, mc	0.05976	Intercept, bc	-0.05018	
	Last Calibration Date:	15-Jan-24	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$				
	Next Calibration Date:	14-Jan-25	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc				

Calibration of TSP Sampler								
Calibration		Orfice		HVS				
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis			
1	14.3	3.78	64.16	9.6	3.10			
2	11.5	3.39	57.63	8.1	2.85			
3	9.7	3.12	52.99	6.1	2.47			
4	7.1	2.67	45.46	4.3	2.08			
5	4.0	2.00	34.33	2.0	1.42			
By Linear Regression of Y on X Slope , mw =0.0577 Intercept, bw :0.5536 Correlation coefficient* =0.9973 *If Correlation Coefficient < 0.990, check and recalibrate.								
		Set Point C	alculation					
		urve, take Qstd = 43 CFM e "Y" value according to mw x Ostd + bw = [ΔW	x (Pa/760) x (2'	98/Ta)] ^{1/2}				
Therefore, Set Point; W = $(mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = 3.70$								
Remarks:								
Conducted by:	Wong Shi		:X	N. Ang	Date: 11-Nov-24			
Checked by:	Henry I	Leung Signature	: \-len	y Xoy	Date: 11-Nov-24			