

File No. MA20003/18/025

Project No.	CKL 1 - Flat 1	21 Cha Kwo Lin				
Date:	4-N	1ar-24	Next Due Date:	4-May-24	Operator:	SK
Equipment No.:	A-	01-18	Model No.:	TE 5170	Serial No.	0723
			Ambient Condi	tion		
Temperatu	re, Ta (K)	292.7	Pressure, Pa (mmI	Hg)	759.3	

Orifice Transfer Standard Information						
Serial No. 3864 Slope, mc 0.05976 Intercept, bc -0.05018						
Last Calibration Date:	Last Calibration Date: 15-Jan-24 $\mathbf{mc} \mathbf{x} \mathbf{Qstd} + \mathbf{bc} = \left[\Delta \mathbf{H} \mathbf{x} \left(\mathbf{Pa}/760\right) \mathbf{x} \left(298/\mathbf{Ta}\right)\right]^{1/2}$					
Next Calibration Date:						

	Calibration of TSP Sampler							
Calibration		Orfice			HVS			
Point	ΔH (orifice), in. of water	$[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2} $ Y- axis			
1	13.7	3.73	63.31	9.4	3.09			
2	10.3	3.24	55.00	7.3	2.72			
3	8.6	2.96	50.33	5.5	2.37			
4	6.3	2.53	43.20	3.6	1.91			
5	3.7	1.94	33.30	2.0	1.43			
By Linear Regression of Y on X Slope , mw =0.0573 Intercept, bw :0.5035								
Correlation	coefficient* =	0.9968	_					
*If Correlation C	Coefficient < 0.990), check and recalibrate.						
		Set Point (Calculation					
From the TSP Fi	eld Calibration C	urve, take Qstd = 43 CFM						
From the Regres	sion Equation, the	e "Y" value according to						
		mw x Qstd + bw = $[\Delta W]$						
Therefore, Se	et Point; W = (mv	$(x + y + y)^{2} x (760 / Pa) x ($	Ta / 298) =	3.77	·			
Remarks:								
			h	٦l				
Conducted by:	Wong Shi	ng Kwai Signature:		火-	Date: 4-Mar-24			
Checked by:	Henry I	Leung Signature:	-lem	j Xoz j	Date: 4-Mar-24			

File No. MA20003/55/025

Project No.	CKL 2 - Flat 10	03 Cha Kwo Lin				
Date:	4-M	lar-24	Next Due Date:	4-May-24	Operator:	SK
Equipment No.:	A-(01-55	Model No.:	TE 5170	Serial No.	1956
			Ambient Conditi	on		
Temperatu	ire, Ta (K)	292.7	Pressure, Pa (mmH	Ig)	759.3	

Orifice Transfer Standard Information							
Serial No.	3864	3864 Slope, mc 0.05976 Intercept, bc -0.05018					
Last Calibration Date:	15-Jan-24	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date:	14-Jan-25	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc					

Calibration of TSP Sampler							
Calibration		Orfice			HVS		
Point	ΔH (orifice), in. of water	$[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis		
1	13.7	3.73	63.31	9.8	3.16		
2	11.4	3.41	57.82	7.8	2.82		
3	9.5	3.11	52.86	6.1	2.49		
4	5.7	2.41	41.13	3.1	1.78		
5	3.6	1.91	32.86	2.0	1.43		
Slope , mw = Correlation	By Linear Regression of Y on X Slope , mw =0.0577 Intercept, bw :0.5305 Correlation coefficient* =0.9975 *If Correlation Coefficient < 0.990, check and recalibrate.						
		Set Point C urve, take Qstd = 43 CFM e "Y" value according to mw x Qstd + bw = [ΔW 2		98/Ta)1 ^{1/2}			
Therefore, Se	et Point; W = (mv	$x = (14)^{2} x (760 / Pa) x ($					
Remarks:							
Conducted by:	Wong Shi		X	Ŋ.	Date: 4-Mar-24		
Checked by:	Henry I	Leung Signature:	- lem	1 X27	Date: 4-Mar-24		

CIN@TECH 4

File No. MA20003/04/0023

Project No.	KER 1 - Future						
Date:	10-1	Mar-24	Next Due Date:	10-May-24	Operator:	SK	_
Equipment No.:	A-(01-04	Model No.:	TE 5170	Serial No.	10595	
			Ambient Condit	tion			
Temperatu	ure, Ta (K)	289	Pressure, Pa (mml	Hg)	765.8		

Orifice Transfer Standard Information						
Serial No. 3864 Slope, mc 0.05976 Intercept, bc -0.05018						
Last Calibration Date:	15-Jan-24]	mc x Qstd + bo	$c = [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]$	$]^{1/2}$	
Next Calibration Date:	14-Jan-25	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc				

Calibration of TSP Sampler								
Calibration		Orfice			HVS			
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis			
1	13.4	3.73	63.28	9.2	3.09			
2	10.7	3.33	56.63	7.3	2.75			
3	8.6	2.99	50.86	5.5	2.39			
4	5.5	2.39	40.84	3.6	1.93			
5	3.7	1.96	33.65	2.3	1.55			
Slope , mw =								
	coefficient* =	0.9991	_					
*If Correlation C	Coefficient < 0.990), check and recalibrate.						
		Set Point	Calculation					
From the TSP Fi	eld Calibration Cu	urve, take Qstd = 43 CFM						
From the Regres	sion Equation, the	"Y" value according to						
Therefore Se	et Point: W = (my	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}]^{2} \mathbf{x} (760 / Pa) \mathbf{x}$		98/Ta)] ^{1/2} 3.96				
	(11)		(14/2/0)					
Remarks:								
Conducted by:	Wong Shi	ng Kwai Signatur		火.	Date: 10-Mar-24			
Checked by:	Henry I	Leung Signatur	e: l-len	- May	Date: 10-Mar-24			

File No. MA20003/44/0022

Project No.	KTD1 - Centre						
Date:	10-N	Mar-24	Next Due Date:	10-May-24	Operator:	SK	
Equipment No.:	A-(01-44	Model No.:	TE-5170	Serial No.	1316	
							_
			Ambient Condit	ion			
Temperatu	ire. Ta (K)	289	Pressure, Pa (mmF	-Ig)	765.8		

Orifice Transfer Standard Information						
Serial No. 3864 Slope, mc 0.05976 Intercept, bc -0.05018						
Last Calibration Date:	15-Jan-24	1	mc x Qstd + bo	$c = [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]$	$]^{1/2}$	
Next Calibration Date:	14-Jan-25 $Qstd = \{ [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2} - bc \} / mc$					

Calibration of TSP Sampler							
Calibration		Orfice			HVS		
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis		
1	13.6	3.76	63.74	9.7	3.17		
2	11.3	3.43	58.18	7.5	2.79		
3	9.0	3.06	52.01	5.7	2.43		
4	6.4	2.58	43.99	3.9	2.01		
5	3.9	2.01	34.52	2.3	1.55		
Slope , mw = Correlation	coefficient < 0.990		Intercept, bw = -	-0.394	15		
		Set Point C	alculation				
		urve, take Qstd = 43 CFM e "Y" value according to mw x Qstd + bw = [ΔW x	x (Pa/760) x (29	98/Ta)] ^{1/2}			
Therefore, Se	et Point; W = (my	$(x + bw)^2 x (760 / Pa) x ($	Ta / 298) =	3.77			
Remarks:							
Conducted by:	Wong Shi	ng Kwai Signature:	k	<u></u> Х-	Date: 10-Mar-24		

Signature:

-lem day

Date:

10-Mar-24

Checked by: <u>Henry Le</u>ung

15-Jan-24

14-Jan-25

Last Calibration Date:

Next Calibration Date:

File No. MA20003/41/0023

Project No.	o. KTD 2D - Next to the SOR Office of Trunk Road T2 in Kai Tak Area							
Date:	10-N	Mar-24	Next Due Date:	10-1	May-24	Operator:	SK	
Equipment No.:	A-	01-41	Model No.:	TE	E 5170	Serial No.	5280	
			Ambient C	ondition				
Temperatu	ıre, Ta (K)	289	Pressure, Pa	(mmHg)		765.8		
		Or	ifice Transfer Star	ndard Informa	ation			
Seria	l No.	3864	Slope, mc	0.05976	Interc	ept, bc	-0.05018	

mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$

Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc

		Calibration of	TSP Sampler		
Calibration		Orfice			HVS
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis
1	14.0	3.81	64.66	9.6	3.16
2	11.5	3.46	58.68	8.6	2.99
3	9.5	3.14	53.41	6.4	2.58
4	7.0	2.70	45.97	4.5	2.16
5	4.0	2.04	34.95	2.2	1.51
Slope , mw =	0.0573 coefficient* =	0.9955	Intercept, bw	-0.474	6
			F () (- ()		
), check and recalibrate.	_		
		Set Point C	Calculation		
From the TSP Fi	eld Calibration C	urve, take Qstd = 43 CFM			
		"Y" value according to			
6	1	mw x Qstd + bw = $[\Delta W]$	x (Pa/760) x (29	98/Ta)] ^{1/2}	
Therefore Se	at Point: W - (mr	$(x + y)^2 x (760 / Pa) x ($	T_{2} (208) –	3.81	
merenore, Se	x I OIIII, W = (IIIV	$x \operatorname{Qstu} + \operatorname{Uw} = x (70071a) x ($	1a / 298) -		
Remarks:					
			b	24	
Conducted by:	Wong Shi	ng Kwai Signature	:		Date: 10-Mar-24
	Wong Shi Henry I		: <u> </u>	N- 	Date: 10-Mar-24 Date: 10-Mar-24

File No. MA20003/18/026

Project No.	CKL 1 - Flat 1								
Date:	4-N	lay-24	Next Due Date:	4-Jul-24	Operator:	SK			
Equipment No.:	A-	01-18	Model No.:	TE 5170	Serial No.	0723			
	Ambient Condition								
Temperatu	re, Ta (K)	297	Pressure, Pa (mmH	Hg)	757				

Orifice Transfer Standard Information						
Serial No.	3864	Slope, mc	0.05976	Intercept, bc	-0.05018	
Last Calibration Date:	15-Jan-24	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$				
Next Calibration Date:	14-Jan-25		Qstd = $\{[\Delta H]$	$(Pa/760) \times (298/Ta)]^{1/2} - bc$	/ mc	

	Calibration of TSP Sampler								
Calibration		Orfice			HVS				
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2} $ Y- axis				
1	13.8	3.71	62.98	9.3	3.05				
2	10.4	3.22	54.79	7.2	2.68				
3	8.7	2.95	50.18	5.4	2.32				
4	6.4	2.53	43.16	3.5	1.87				
5	3.8	1.95	33.45	2.0	1.41				
By Linear Regression of Y on X Slope , mw = 0.0572 Intercept, bw : -0.5326 Correlation coefficient* = 0.9962									
*If Correlation C	Coefficient < 0.990), check and recalibrate.							
		Set Point (Calculation						
From the TSP Fi	eld Calibration C	urve, take Qstd = 43 CFM							
From the Regres	sion Equation, the	e "Y" value according to							
Therefore, Se	et Point; W = (mv	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}]$ w x Qstd + bw) ² x (760 / Pa) x (760 / Pa) x (760 / Pa)							
Remarks:									
Conducted by:	Wong Shi	ng Kwai Signature:	k	y.L	Date: 4-May-24				
Checked by:	Henry I	Leung Signature:	-lem	j Xon j	Date: 4-May-24				

File No. MA20003/55/026

Project No.	CKL 2 - Flat 102						
Date:	4-Ma	ay-24	Next Due Date:	4-Jul-24	Operator:	SK	
Equipment No.: <u>A-0</u>		1-55	Model No.:	TE 5170	Serial No.	1956	
			Ambient Condit	ion			
Temperatu	re, Ta (K)	297	Pressure, Pa (mmI	-Ig)	757		

Orifice Transfer Standard Information						
Serial No.	3864	Slope, mc	0.05976	Intercept, bc	-0.05018	
Last Calibration Date:	15-Jan-24	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$				
Next Calibration Date:	14-Jan-25		$\mathbf{Qstd} = \{ [\Delta \mathbf{H} \mathbf{x}] \}$	$\left(\text{Pa/760} \right) x \left(298/\text{Ta} \right) \right]^{1/2} \text{-bc} \} / $	mc	

Calibration of TSP Sampler							
Calibration		Orfice			HVS		
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \times (Pa/760) \times \mathbf{Y}$ -axis		
1	13.8	3.71	62.98	9.7	3.11		
2	11.5	3.39	57.57	7.7	2.77		
3	9.6	3.10	52.67	6.0	2.45		
4	5.8	2.41	41.13	3.0	1.73		
5	3.7	1.92	33.02	2.0	1.41		
By Linear Regression of Y on X Slope , mw =0.0578 Intercept, bw :0.5654 Correlation coefficient* =0.9965 *If Correlation Coefficient < 0.990, check and recalibrate.							
		Set Point C urve, take Qstd = 43 CFM e "Y" value according to mw x Qstd + bw = [ΔW x		98/Ta)] ^{1/2}			
Therefore, Se	et Point; W = (mv	$(x + bw)^2 x (760 / Pa) x ($	Ta / 298) =	3.70			
Remarks:							
Conducted by:	Wong Shi		X	Ŋ.	Date: 4-	May-24	
Checked by:	Henry I	Leung Signature:	-lem	1 X27	Date: 4-	May-24	

CIN@TECH 4

File No. MA20003/04/0024

Project No.	KER 1 - Future						
Date:	10-N	May-24	Next Due Date:	10-Jul-24	Operator:	SK	
Equipment No.:	A-(01-04	Model No.:	TE 5170	Serial No.	10595	
			Ambient Condition	on			
Temperatu	ire. Ta (K)	298.3	Pressure, Pa (mmH	(g)	761.4		

Orifice Transfer Standard Information							
Serial No.	3864	Slope, mc 0.05976 Intercept, bc -0.05018					
Last Calibration Date:	15-Jan-24	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date:	14-Jan-25	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc					

Calibration of TSP Sampler							
Calibration		Orfice			HVS		
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis		
1	13.5	3.68	62.35	9.1	3.02		
2	10.8	3.29	55.85	7.2	2.68		
3	8.7	2.95	50.22	5.4	2.32		
4	5.6	2.37	40.46	3.5	1.87		
5	3.8	1.95	33.47	2.2	1.48		
Slope , mw =	ession of Y on X 0.0529	0.0004	Intercept, bw	-0.286	54		
	coefficient* =	0.9991					
*If Correlation C	Coefficient < 0.990), check and recalibrate.					
			Calculation				
		urve, take Qstd = 43 CFM					
From the Regres	sion Equation, the	"Y" value according to					
		mw x Qstd + bw = $[\Delta W]$	x (Pa/760) x (29	98/Ta)] ^{1/2}			
Therefore, Se	et Point; W = (mv	$(x + bw)^2 x (760 / Pa) x$	(Ta / 298) =	3.95	· <u>·····</u> ·····		
Remarks:							
Conducted by:	Wong Shi	ng Kwai Signatur		火.	Date: 10-May-24		
Checked by:	Henry I	_eungSignature	e: I-len	y May	Date: 10-May-24		

File No. MA20003/44/0023

Project No.	KTD1 - Centre	e of Excellence in				
Date:	10-1	May-24	Next Due Date:	10-Jul-24	Operator:	SK
Equipment No.:	A-4	01-44	Model No.:	TE-5170	Serial No.	1316
			Ambient Conditi	ion		
Temperatu	ire. Ta (K)	298.3	Pressure, Pa (mmH	Hg)	761.4	

Orifice Transfer Standard Information								
Serial No.	3864	3864 Slope, mc 0.05976 Intercept, bc -0.05018						
Last Calibration Date:	15-Jan-24	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$						
Next Calibration Date:	14-Jan-25	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc						

Calibration of TSP Sampler									
Calibration		Orfice			HVS				
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ge (Pa/760) \ge (298/Ta)]^{1/2}$ Y-axis				
1	13.7	3.70	62.80	9.6	3.10				
2	11.4	3.38	57.36	7.4	2.72				
3	9.2	3.03	51.62	5.6	2.37				
4	6.5	2.55	43.52	3.8	1.95				
5	3.9	1.98	33.90	2.2	1.48				
Slope , mw = Correlation	By Linear Regression of Y on X Slope , mw =0.0553Intercept, bw :0.4336 Correlation coefficient* =0.9972 *If Correlation Coefficient < 0.990, check and recalibrate.								
From the TSD Fi	ald Calibration C	Set Point C urve, take Qstd = 43 CFM	Calculation						
		"Y" value according to							
	-	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}]$ v x Qstd + bw) ² x (760 / Pa) x (
Remarks:									
Conducted by:	Wong Shi	ng Kwai Signature	: <u>k</u>	<u>у</u>	Date: 10-May-24				
Checked by:	Henry I	Leung Signature	: \-lem	, Xoy	Date: 10-May-24				

File No. MA20003/41/0024

Project No.	Project No. KTD 2D - Next to the SOR Office of Trunk Road T2 in Kai Tak Area								
Date:	10-May-24		Next Due Date: 10-Ju		-24	Operator:	SK		
Equipment No.:	A-01-41		Model No.: TE 5		70	Serial No.	5280		
			Ambient Condit	tion					
Temperature, Ta (K)298.3Pressure, Pa (mmHg)761.4									
		0	rifice Transfer Standard	l Informatio	n				
						· · · · · · · · · · · · · · · · · · ·	1		

Orifice Transfer Standard Information							
Serial No.	3864	Slope, mc	0.05976	Intercept, bc	-0.05018		
Last Calibration Date:	15-Jan-24	1	mc x Qstd + bo	$c = [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]$] ^{1/2}		
Next Calibration Date:	14-Jan-25		$\mathbf{Qstd} = \{ [\Delta \mathbf{H} \mathbf{x}] \}$	$\left({Pa/760} \right) x \left({298/Ta} \right) \right]^{1/2} \mbox{-bc} \} \mbox{/}$	mc		

Calibration of TSP Sampler									
Calibration		Orfice		HVS					
Point	ΔH (orifice), in. of water	$[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis				
1	14.2	3.77	63.92	9.5	3.08				
2	11.7	3.42	58.10	8.5	2.92				
3	9.7	3.12	52.98	6.3	2.51				
4	7.2	2.68	45.76	4.4	2.10				
5	4.0	2.00	34.32	2.1	1.45				
Slope , mw = Correlation	By Linear Regression of Y on X Slope , mw = 0.0572 Intercept, bw = -0.5068 Correlation coefficient* = 0.9958 *If Correlation Coefficient < 0.990, check and recalibrate.								
Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W x (Pa/760) x (298/Ta)]^{1/2}$									
Therefore, Set Point; $W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) =$ 3.81 Remarks:									
·	Wong Shi Henry I	ng Kwai Signature Leung Signature	: :le	N. Jan J	Date: 10-May-24 Date: 10-May-24				

V i r o	n m	ent	al	0	\sim		Di Janua	ALIBRATION UE DATE: ary 15, 2025
	Ge	rtifa	cate				tion	
			Calibration	Certificatio	on Informat	ion		
Cal. Date: Ja	nuary 15,	2024	Rootsr	neter S/N:	438320	Ta:	294	°К
Operator: Ji	m Tisch					Pa:	755.4	mm Hg
Calibration Mo	ndel #•	TE-5025A	Calib	prator S/N:	3864			0
	Juci #.		Can		5004			
Γ		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4380	3.3	2.00	
	2	3	4	1	1.0270	6.4	4.00	
	3	5	6	1	0.9180	8.0	5.00	
	4	7	8	1	0.8750	8.9	5.50	
	5	9	10	1	0.7230	12.9	8.00	
				Data Tabula	tion			
	1		·					
	Vata	0.44	$\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right)}$	$\frac{1}{12}$			$\sqrt{\Delta H(Ta/Pa)}$	
	Vstd	Qstd					/	
	(m3)	(x-axis)	(y-axi		Va	(x-axis)	(y-axis)	
	1.0031	0.6975	1.419		0.9956	0.6924	0.8823	
	0.9968	1.0858	2.244		0.9913	1.0778	1.3950	
	0.9956	1.1378	2.353		0.9882	1.1294	1.4631	
	0.9903	1.3697	2.839		0.9829	1.3595	1.7645	
		m=	2.111			m=	1.32248	
	STD	b=	-0.050)43	QA	b=	-0.03134	
		r=	0.999	98		r=	0.99998	
				Calculatio	nc			
-	Vetd=	AVOI((Pa-AD)	/Pstd)(Tstd/Ta			ΔVol((Pa-ΔF	0)/Pa)	
		Vstd/ATime	,	·/		Va/ATime	,, i uj	
-			For subsequ	ent flow ra		Contraction of the local division of the loc		
		// [//	<u> </u>	
	Qstd=	1/m((√∆H(Pa <u>Tstd</u> Pstd Ta))-b)	Qa=	1/m ((√∆H	(Ta/Pa))-b)	
		Conditions						
Tstd:	298.15			[RECA	IBRATION	
Pstd:		mm Hg				mmondo		n non 1000
		ey	n 1120)				nual recalibratio	· /
ΔH: calibrator ΔP: rootsmeter							Regulations Part 5	
Ta: actual abso							Reference Meth	1
						-	ended Particulate	
Pa: actual barometric pressure (mm Hg) the Atmosphere, 9.2.17, p b: intercept						ie, 9.2.1/, Dage :	5V I	
							/ // 0	

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

CIN@TECH 🤳

Certificate of Calibration - Wind Monitoring Station

Yau Lai Estate, Bik Lai House
Davis Instruments
<u>Davis7440</u>
<u>MC01010A44</u>
<u>SA-03-04</u>
<u>18-Feb-2024</u>
<u>18-Aug-2024</u>

1. Performance check of Wind Speed

Wind Sp	beed, m/s	Difference D (m/s)
Wind Speed Reading (V1)	Anemometer Value (V2)	D = V1 - V2
0.0	0.0	0.0
1.5	1.7	-0.2
2.5	2.4	0.1
4.0	3.8	0.2

2. Performance check of Wind Direction

Wind Di	rection (°)	Difference D (°)
Wind Direction Reading (W1)	Marine Compass Value (W2)	$\mathbf{D} = \mathbf{W1} - \mathbf{W2}$
0	0	0.0
90	90	0.0
180	180	0.0
270	270	0.0

Test Specification:

1. Performance Wind Speed Test - The wind meter was on-site calibrated against the anemometer

2. Performance Wind Direction Test - The wind meter was on-site calibrated against the marine compass at four direction